Hostname: page-component-5db6c4db9b-fdz9p Total loading time: 0 Render date: 2023-03-25T11:59:37.416Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Synthesis of Ultrathin Ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

Published online by Cambridge University Press:  21 March 2011

André Anders
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720
Ashok V. Kulkarni
2Read-Rite Corporation, 44100 Osgood Road, Fremont, California 94539
Get access


The application of cathodic-arc-deposited films has been very slow due to the infamous macroparticle problem. We report about the application of the open Twist Filter as the key component to an advanced filtered cathodic arc system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film propertieshave been investigated with respect to application in the magnetic data storage industry. Films can be deposited in a reproducible manner where film thickness control relies on arc pulse counting once deposition rates have been calibrated. Films of 3 nm thickness have been deposited that passed acid and Battelle corrosion tests. Monte Carlo Simulation of energetic carbon deposition shows the formation of an intermixed transition layer of about 1 nm. The simulation indicates that because the displacement energy of carbon isnot smaller than of magnetic materials, films thinner than 2 nm are either not high in sp3 content or represent a carbidic phase.

Research Article
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



[1] Wei, B., Zhang, B., and Johnson, K. E., J. Appl. Phys., vol. 83, pp. 24912499, 1998.CrossRefGoogle Scholar
]2] Stanishevsky, A., Chaos, Solitons & Fractals, vol. 10, pp. 20452066, 1999.CrossRefGoogle Scholar
[3] Bai, M., Kato, K., Umehara, N., Miyake, Y., Xu, J., and Tokisue, H., Surf. & Coat. Technol., vol. 126, pp. 181194, 2000.CrossRefGoogle Scholar
[4] Shi, J. R., Shi, X., Sun, Z., Liu, E., Tay, B. K., and Jin, X. Z., Int. J. Mod. Phys. B, vol. 14, pp.315320, 2000.CrossRefGoogle Scholar
[5] Monteiro, O. R., Delplancke-Ogletree, M.-P., and Brown, I. G., Thin Solid Films, vol. 342, pp. 100107, 1999.CrossRefGoogle Scholar
[6] Tsai, H. and Bogy, D. B., J. Vac. Sci. Technol. A, vol. 5, pp. 32873312, 1987.CrossRefGoogle Scholar
[7] Bhatia, C. S., Fong, W., Chen, C. Y., Wei, J., Bogy, D., Anders, S., Stammler, T., and Stöhr, J., IEEE Trans. Magnetics, vol. 35, pp. 910915, 1999.CrossRefGoogle Scholar
[8] Goglia, P. R., Berkowitz, J., Hoehn, J., Xidis, A., and Stover, L., Diamond Rel. Mat., vol. 10, pp. 271277, 2001.CrossRefGoogle Scholar
[9] Li, X. D. and Bhushan, B., J. Mat. Res., vol. 14, pp. 23282337, 1999.CrossRefGoogle Scholar
[10] Li, X. and Bhushan, B., Thin Solid Films, vol. 355 356, pp. 330336, 1999.CrossRefGoogle Scholar
[11] Anders, S., Bhatia, C. S., Fong, W., Lo, R. Y., and Bogy, D. B., Mat. Res. Soc. Symp. Proc., vol. 517, pp. 371382, 1998.CrossRefGoogle Scholar
[12] Brown, I. G., Rev. Sci. Instrum., vol. 65, pp. 30613081, 1994.CrossRefGoogle Scholar
[13] Anders, A., IEEE Trans. of Plasma Sci., vol. 29, pp. in print, 2001.Google Scholar
[14] Yushkov, G. Y., Anders, A., Oks, E. M., and Brown, I. G., J. Appl. Phys., vol. 88, pp. 56185622, 2000.CrossRefGoogle Scholar
[15] Kutzner, J. and Miller, H. C., J. Phys. D: Appl. Phys., vol. 25, pp. 686693, 1992.CrossRefGoogle Scholar
[16] Fallon, P. J., Veerasamy, V. S., Davis, C. A., Robertson, J., Amaratunga, G. A. J., Milne, W. I., and Koskinen, J., Phys. Rev. B, vol. 48, pp. 47774782, 1993.CrossRefGoogle Scholar
[17] Monteiro, O. and Anders, A., IEEE Trans. Plasma Sci., vol. 27, pp. 10301033, 1999.CrossRefGoogle Scholar
[18] Sanders, D. M., Boercker, D. B., and Falabella, S., IEEE Trans. Plasma Sci., vol. 18, pp. 883894, 1990.CrossRefGoogle Scholar
[19] Boxman, R. L., Zhitomirsky, V., Alterkop, B., Gidalevitch, E., Beilis, I., Keidar, M., and Goldsmith, S., Surf. & Coat. Technol, vol. 86 87, pp. 243253, 1996.CrossRefGoogle Scholar
[20] Boxman, R. L. and Goldsmith, S., Surf. & Coat. Technol., vol. 52, pp. 3950, 1992.CrossRefGoogle Scholar
[21] Anders, A., Surf. & Coat. Technol., vol. 120 121, pp. 319330, 1999.CrossRefGoogle Scholar
[22] Aksenov, I. I., Belous, V. A., and Padalka, V. G., Instrum. Exp. Tech., vol. 21, pp. 14161418, 1978.Google Scholar
[23] Baldwin, D. A. and Fallabella, S., “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 1995, pp. 309316.Google Scholar
[24] Anders, S., Anders, A., Dickinson, M. R., MacGill, R. A., and Brown, I. G., IEEE Trans. Plasma Sci., vol. 25, pp. 670674, 1997.CrossRefGoogle Scholar
[25] Witke, T., Schuelke, T., Schultrich, B., Siemroth, P., and Vetter, J., Surf. & Coat. Technol, vol.126, pp. 8188, 2000.CrossRefGoogle Scholar
[26] Welty, R. P., “Rectangular vacuum-arc plasma source.USA: Vapor Technologies, Inc., 1996.Google Scholar
[27] Gorokhovsky, V., “Apparatus for Application of Coatings in Vacuum, Rectangular Filter.US, 1995.Google Scholar
[28] Shi, X., Tay, B. K., Tan, H. S., Liu, E., Shi, J., Cheah, L. K., and Jin, X., Thin Solid Films, vol. 345, pp. 16, 1999.CrossRefGoogle Scholar
[29] Shi, X., Tay, B. G., and Lau, S. P., Int. J. Mod. Phys. B, vol. 14, pp. 136153, 2000.CrossRefGoogle Scholar
[30] Storer, J., Galvin, J. E., and Brown, I. G., J. Appl. Phys., vol. 66, pp. 52455250, 1989.CrossRefGoogle Scholar
[31] Koskinen, J., Anttila, A., and Hirvonen, J.-P., Surf. Coat. Technol, vol. 47, pp. 180187, 1991.CrossRefGoogle Scholar
[32] Anttila, A., Salo, J., and Lappalainen, R., Mat. Letters, vol. 24, pp. 153156, 1995.CrossRefGoogle Scholar
[33] Anders, A. and MacGill, R. A., Surf. & Coat. Technol, pp. presented at the 27th ICMCTF, San Diego, april 10–14, 2000., 2000.Google Scholar
[34] Anders, A., Brown, I. G., MacGill, R. A., and Dickinson, M. R., J. Phys. D: Appl. Phys., vol.31, pp. 584587, 1998.CrossRefGoogle Scholar
[35] Fong, W., “Fabrication and evaluation of 5 nm cathodic-arc carbon films for disk drive applications,” in Department of Mechanical Engineering, Computer Mechanics Laboratory. Berkeley, CA: University of California at Berkeley, 1999.Google Scholar
[36] Anders, A., Ryan, F. R., Fong, W., and Bhatia, C. S., “Ultrathin diamondlike carbon films deposited by filteredcarbon vacuum arcs,” IXX Int. Symp. on Discharges and Electrical Insulation in Vacuum, Xi'an, P.R. China, 2000, pp. accepted for publication in IEEE Trans. Plasma Sci. (2001).Google Scholar
[37] Pharr, G. M., Callahan, D. L., McAdams, D., Tsui, T. Y., Anders, S., Anders, A., Ager, J. W., Brown, I.G., Bhatia, C. S., Silva, S. R. P., and Robertson, J., Appl. Phys. Lett, vol. 68, pp. 779781, 1996.CrossRefGoogle Scholar
[38] Schneider, D., Witke, T., Schwarz, T., Schöneich, B., and Schultrich, B., Surf. & Coat. Technol., vol. 126, pp. 136141, 2000.CrossRefGoogle Scholar
[39] Schneider, J. M., Appl. Phys. Lett, vol. 76, pp. 15311533, 2000.CrossRefGoogle Scholar
[40] Schneider, J. M., Anders, A., Hjörvarsson, B., Petrov, I., Macak, K., Helmerson, U., and Sundgren, J.-E., Appl. Phys. Lett, vol. 74, pp. 200202, 1999.CrossRefGoogle Scholar
[41] Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985.Google Scholar
[42] Biersack, J. P., Nucl. Instrum. Meth. Phys. Res. B, vol. 59 60, pp. 2127, 1991.CrossRefGoogle Scholar
[43] Nastasi, M., Mayer, J. W., and Hirvonen, J. K., Ion-Solid Interactions. Cambridge, UK: Cambridge University Press, 1996.CrossRefGoogle Scholar