Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-10-31T22:45:19.804Z Has data issue: false hasContentIssue false

Temperature Dependent Electrical and Dielectrics Properties of Metal-Insulator-Metal Capacitors with Alumina-Silicone Nanolaminate Films

Published online by Cambridge University Press:  18 September 2014

Santosh K. Sahoo
Affiliation:
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Rakhi P. Patel
Affiliation:
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Colin A. Wolden
Affiliation:
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Get access

Abstract

Alumina-silicone hybrid nanolaminate films were synthesized by plasma enhanced chemical vapor deposition (PECVD) process. PECVD allows digital control over nanolaminate construction, and may be performed at low temperature for compatibility with flexible substrates. These materials are being considered as dielectrics for application such as capacitors in thin film transistors and memory devices. Temperature dependent electrical and dielectric properties of the nanolaminate dielectric films in metal-insulator-metal structures are taken in the range of 200- 340 K to better asses their potential applications for different devices. It is observed that the frequency dependent dielectric constant (εr) and ac conductivity (σac) increase with the temperature. Both quadratic (α) and linear (β) voltage coefficient of capacitance (VCC) increases as the temperature increases. The temperature co-efficient of capacitance (TCC) decreases from 894 to 374 ppm/K as the Al2O3 composition increases in the alumina/silicone nanolaminates. Activation energy (Ea) for hopping conduction mechanism varies from 0.011 eV to 0.008 eV as the alumina composition increases from 50 to 83.3%.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sahoo, S. K., Misra, D., Sahoo, M., MacDonald, C. A., Bakhru, H., Agrawal, D. C., Mohapatra, Y. N., Majumder, S. B., and Katiyar, R. S., J. Appl. Phys. 109, 064108 (2011).CrossRefGoogle Scholar
Kim, S. J., Cho, B. J., Li, M. -F., Ding, S.-J., Zhu, C., Yu, M. B., Narayanan, B., Chin, A., and Kwong, D.-L., IEEE Electron Dev. Lett. 25, 538 (2004).CrossRefGoogle Scholar
Chiang, K. C., Huang, C. -C., Chen, G. L., Chen, W. J., Kao, H. L., Wu, Y. -H., and Chin, A., IEEE Trans. Electron. Devices 53, 2312 (2006).CrossRefGoogle Scholar
Patel, R. P. and Wolden, C. A., Appl. Surf. Sci. 268, 416 (2013).CrossRefGoogle Scholar
Ortiz, R. P., Facchetti, A., and Marks, T. J., Chem. Rev. 110, 205 (2010).CrossRefGoogle Scholar
Choi, M. C., Kim, Y., and Ha, C. S., Prog. Polym. Sci. 33, 581 (2008).CrossRefGoogle Scholar
Deman, A. L., Erouel, M., Lallemand, D., Phaner-Goutorbe, M., Lang, P., and Tardy, J., J. Non-Cryst. Solids 354, 1598 (2008).CrossRefGoogle Scholar
Hwang, D. K., Kim, C. S., Choi, J. M., Lee, K., Park, J. H., Kim, E., Baik, H. K., Kim, J. H., and Im, S., Adv. Mater. 18, 2299 (2006).CrossRefGoogle Scholar
Seol, Y. G., Noh, H. Y., Lee, S. S., Ahn, J. H., and Lee, N. -E., Appl. Phys. Lett. 93, 013305 (2008).CrossRefGoogle Scholar
Salmi, L. D., Puukilainen, E., Vehkamaki, M., Heikkila, M., and Ritala, M., Chem. Vapor Depos. 15, 221 (2009).CrossRefGoogle Scholar
Sahoo, S. K., Patel, R. P., and Wolden, C. A., Appl. Phys. Lett. 101, 142903 (2012).CrossRefGoogle Scholar
Wu, Y. H., Kao, C. K., Chen, B. Y., Lin, Y. S., Li, M. Y., and Wu, H. C., Appl. Phys. Lett. 93, 033511 (2008).CrossRefGoogle Scholar
Woo, J. C., Chun, Y. S., Joo, Y. H., and Kim, C. I., Appl. Phys. Lett. 100, 081101 (2012).CrossRefGoogle Scholar
Lee, S. K., Kim, K. S., Kim, S. W., Lee, D. J., Park, S. J., and Kim, S., IEEE Electron. Dev. Lett. 32, 384 (2011).CrossRefGoogle Scholar
Wu, Y. -H., Lin, C. -C., Hu, Y. -C., Wu, M. -L., Wu, J. -R., and Chen, L. -L., IEEE Electron. Dev. Lett. 32, 1107 (2011).CrossRefGoogle Scholar
Chen, L. L., Wu, Y. H., Lin, Y. B., Lin, C. C., and Wu, M. L., IEEE Electron Dev. Lett. 33, 1447 (2012).CrossRefGoogle Scholar
Patel, R. P., Chiavetta, D., and Wolden, C. A., J. Vac. Sci. Technol. A 29, 061508 (2011).CrossRefGoogle Scholar
Patel, R. P. and Wolden, C. A., J. Vac. Sci. Technol. A 29, 021012 (2011).CrossRefGoogle Scholar
Seman, M. T., Richards, D. N., Rowlette, P., and Wolden, C. A., Chem. Vap. Deposition 14, 296 (2008).CrossRefGoogle Scholar
Deger, D., Ulutas, K., and Yakut, S., J. Ovon. Res. 8, 179 (2012).Google Scholar
Hester, R. K., Tan, K. -S., de Wit, M., Fattaruso, J. W., Kiriaki, S., and Hellums, J. R., IEEE J. Solid-State Circuits 25, 173 (1990).CrossRefGoogle Scholar
Sahoo, S. K., Patel, R. P., and Wolden, C. A., J. Appl. Phys. 114, 074101 (2013).CrossRefGoogle Scholar
Von Hippel, A., Dielectric Materials and Applications. (John Wiley & Sons Inc., New York, 1954).Google Scholar
Hu, H., Zhu, C., Lu, Y. F., Li, M. F., Cho, B. J., and Choi, W. K., IEEE Electron. Dev. Lett. 23, 514 (2002).CrossRefGoogle Scholar
Ding, S. J., Hu, H., Lim, H. F., Kim, S. J., Yu, X. F., Zhu, C. X., Li, M. F., Cho, B. J., Chan, D. S. H., and Rustagi, S. C., IEEE Electron Dev. Lett., 24, 730 (2003).CrossRefGoogle Scholar