Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-15T06:46:23.572Z Has data issue: false hasContentIssue false

Wet Chemical and UV-Vis Spectrometric Iron Speciation in Quenched Low and Intermediate Level Nuclear Waste Glasses

Published online by Cambridge University Press:  18 May 2015

Jamie L. Weaver
Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
Nathalie A. Wall
Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
John S. McCloy
School of Mechanical & Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
Get access


In this study wet chemical methods combined with UV-Vis spectroscopy were performed to quantify Fe(II)/Fe(III) ratios and total iron content of quenched alkali alumino-boro-silicate (simulated nuclear waste) glasses, applying a colorimetric method. We report lessons learned from experimental challenges encountered associated with the colorimetric method, where 1,10 phenanthroline method is complexed with dissolved glass powder and the resulting solution measured for absorbance at 520 nm to determine Fe(II). To obtain total iron, the solution was then equilibrated with a mild reducing agent to chance all Fe to Fe(II), and the absorbance measured again at 520 nm. These absorbance values allowed for calculation of the Fe(II)/Fe(III) ratio, and the total iron content in the glasses. Total Fe measured is somewhat higher than as-batched target values for waste glasses, but very accurate for reference BCR-2G glass. All quenched alumino-boro-silicate glasses analyzed showed a Fe(II)/Fe(III) ratio between 0.06 (± 0.01) and 0.04 (± 0.01). These values are consistent with those obtained for similar glass compositions melted under analogous conditions, indicating a composition of ca. 94-96% Fe(III).

Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Grambow, B., Nuclear Waste Glasses - How Durable?, Elements 2 (6) 357364 (2006).CrossRefGoogle Scholar
Burger, E., Rebiscoul, D., Bruguier, F., Jublot, M., Lartigue, J. E. and Gin, S., Impact of iron on nuclear glass alteration in geological repository conditions: A multiscale approach, Appl. Geochem. 31 (0) 159170 (2013).CrossRefGoogle Scholar
Hunter, R. T., Edge, M., Kalivretenos, A., Brewer, K. M., Brock, N. A., Hawkes, A. E. and Fanning, J. C., Determination of the Fe2+/Fe3+ Ratio in Nuclear Waste Glasses, J. Am. Ceram. Soc. 72 (6) 943947 (1989).CrossRefGoogle Scholar
Fanning, J. C. and Hunter, R. T., Nuclear waste glass, and the Fe2+/Fe3+ ratio, J. Chem. Educ. 65 (10) 888 (1988).CrossRefGoogle Scholar
Muller, I. S., Viragh, C., Gan, H., Matlack, K. S. and Pegg, I. L., Iron Mössbauer redox and relation to technetium retention during vitrification, Hyperf. Inter. 191 (1-3) 347354 (2009).CrossRefGoogle Scholar
Arletti, R., Quartieri, S. and Freestone, I., A XANES study of chromophores in archaeological glass, Appl. Phys. A 111 (1) 99108 (2013).CrossRefGoogle Scholar
Baert, K., Meulebroeck, W., Wouters, H., Cosyns, P., Nys, K., Thienpont, H. and Terryn, H., Using Raman spectroscopy as a tool for the detection of iron in glass, J. Raman Spectrosc. 42 (9) 17891795 (2011).CrossRefGoogle Scholar
Jones, D. R., Jansheski, W. C. and Goldman, D. S., Spectrophotometric determination of reduced and total iron in glass with 1,10-phenanthroline, Anal. Chem. 53 (6) 923924 (1981).CrossRefGoogle Scholar
Klement, R., Kraxner, J. and Liska, M., Spectroscopic Analysis of Iron Doped Glasse with Composition Close to the E-GLASS: A Preliminary Study, Ceram. Silik. 53 180183 (2009).Google Scholar
Kido, L., Müller, M. and Rüssel, C., High temperature vis-NIR transmission spectroscopy of iron-doped glasses, Phys. Chem. Glasses 51 (4) 208212 (2010).Google Scholar
French, W. J. and Adams, S. J., A rapid method for the extraction and determination of iron(II) in silicate rocks and minerals, Analyst 97 (1159) 828831 (1972).CrossRefGoogle Scholar
Begheijn, L. T., Determination of iron(II) in rock, soil and clay, Analyst 104 (1244) 10551061 (1979).CrossRefGoogle Scholar
Schilt, A. A., Analytical Applications of 1,10-Phenanthroline and Related Compounds, Pergamon Press Ltd., Oxford ( 1969).Google Scholar
Stucki, J. W. and Anderson, W. L., The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. I. Sources of variability, Soil Sci. Soc. Am. J. 45 633637 (1981).CrossRefGoogle Scholar
Stucki, J. W., The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. II. A photochemical method., Soil Sci. Soc. Am. J. 45 638641 (1981).CrossRefGoogle Scholar
Komadel, P. and Stucki, J. W., Quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: III. A rapid photochemical method, Clay Clay Miner. 36 379381 (1988).CrossRefGoogle Scholar
Whipple, E. R., Speer, J. A. and Russell, C. W., Errors in FeO determinations caused by tungsten carbide grinding apparatus, Am. Mineral. 69 987988 (1984).Google Scholar
ASTM International, Iron in Trace Quantities Using the 1,10-Phenanthroline Method, E394-09 (2009).Google Scholar
McCloy, J., Washton, N., Gassman, P., Marcial, J., Weaver, J. and Kukkadapu, R., Nepheline crystallization in boron-rich alumino-silicate glasses as investigated by multi-nuclear NMR, Raman, & Mössbauer spectroscopies, J. Noncryst. Solids 409 149165 (2015).CrossRefGoogle Scholar
Jochum, K. P. and Nohl, U., Reference materials in geochemistry and environmental research and the GeoReM database, Chem. Geol. 253 (1–2) 5053 (2008).CrossRefGoogle Scholar
Jochum, K. P., Willbold, M., Raczek, I., Stoll, B. and Herwig, K., Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS, Geostand. Geoanaly. Res. 29 (3) 285302 (2005).CrossRefGoogle Scholar
Wilson, S., USGS: Fe total and Fe(II) values for BCR-2G, by ferrous WDXRF and Fe titration, respectively, Personal communication to: O. Neill, April 29 (2015).Google Scholar
Amonette, J. E. and Templeton, J. C., Improvements to the quantitative assay of nonrefractory minerals for Fe(II) and total Fe using 1,10-phenanthroline, Clay Clay Miner. 46 (1) 5162 (1998).CrossRefGoogle Scholar
Cochain, B., Neuville, D. R., Henderson, G. S., McCammon, C. A., Pinet, O. and Richet, P., Effects of the Iron Content and Redox State on the Structure of Sodium Borosilicate Glasses: A Raman, Mössbauer and Boron K-Edge XANES Spectroscopy Study, J. Am. Ceram. Soc. 95 (3) 962971 (2012).Google Scholar
Kukkadapu, R. K., Li, H., Smith, G. L., Crum, J. D., Jeoung, J.-S., Howard Poisl, W. and Weinberg, M. C., Mössbauer and optical spectroscopic study of temperature and redox effects on iron local environments in a Fe-doped (0.5 mol% Fe2O3) 18Na2O–72SiO2 glass, J. Non-Cryst. Solids 317 (3) 301318 (2003).CrossRefGoogle Scholar
Bandemer, S. L. and Schaible, P. J., Determination of Iron. A Study of the o-Phenanthroline Method, Ind. Eng. Chem. Analy. Ed. 16 (5) 317319 (1944).Google Scholar