Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-23T01:13:46.809Z Has data issue: false hasContentIssue false

ArF Excimer Laser Doping into Amorphous Silicon thin films

Published online by Cambridge University Press:  21 February 2011

M. Elliq
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
A. Slaoui
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
E. Fogarassy
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
H. Pattyn
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
R. Stuck
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
P. Siffert
Affiliation:
Centre de Recherches Nucleaires (IN2P3), Laboratoire PHASE (UPR 292 CNRS), F-67037 Strasbourg Cedex, France
Get access

Abstract

Doping of amorphous silicon (a-Si or a-Si:H) coated by a spin-on oxide film containing the dopant (phosphorus or boron) using an ArF excimer laser has been investigated as a function of laser fluence, number of pulses and dopant film thickness. From these results, it is found that the surface concentration and the junction depth vary with the number of pulses, and that the doping process is rate limiting. Sheet resistance lower than 10 kΩ/□ have been obtained. It is also shown that for a-Si:H films, laser irradiation produces exodiffusion of hydrogen from the molten layer resulting in rough surface. This one-step process seems suitable for polycrystalline silicon thin film transistors (TFT's) fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Narayan, J., Young, R.T. and Wood, R.F., Appl. Phys. Lett. 33, 338 (1978).Google Scholar
2. Fogarassy, E., Stuck, R., Hodeau, M., Wiliaux, A., Toulemonde, M. and Siffert, P., in Proc. Photovoltaic Solar Energy Conf. III, Cannes, France, 1980, ed. Palz, W. (Reidel Publ. Comp., Dordrecht 1981) 639 Google Scholar
3. Slaoui, A., Foulon, F. and Siffert, P., J. Appl. Phys. 67, 6197 (1990).Google Scholar
4. Greenaway, D.L. and Harbeke, G., in Optical Properties and Band Structure of Semiconductors, ed. Pamplin, B.R. (Pergamo, Press, 1968)Google Scholar
5. Elliq, M., Foragassy, E., Stoquert, J.P., Fuchs, C., de Unamuno, S., Prevot, B. and Pattyn, H., Appl. Surf. Sci. 46, 378 (1990).Google Scholar
6. Mathe, E.L., Maillou, J.G., Naudon, A., Fogarassy, E., Elliq, M. and De Unamuno, S., Appl. Surface Sci. 43 142 (1989).Google Scholar
7. Bachrach, R.Z., Winer, K., Boyce, J.B., Ready, S.E., Johnson, R.I. and Anderson, G.B., J. of Electronic Mat. 19 241 (1990).Google Scholar
8. Robertson, G.D. Jr, Baron, R., Vasudev, P.K. and Marsh, O.J., J. of Crystal Growth 68 691 (1984).Google Scholar
9. Sera, K., Okumura, F., Kaneko, S., Itoh, S., Hotta, K. and Hoshino, H., J. of Appl. Phys. 67 2359 (1990).Google Scholar
10. Antony, T.R. and Cline, H.E., J. Appl. Phys. 48 3888 (1977).Google Scholar
11. Maillou, J.G., Mathe, E.L., Desoyer, J.C., De Unamuno, S. and Fogarassy, E., Appl. Surface Sci. 43 150 (1989).Google Scholar
12. Bentini, G.G., Bianconi, M., Correra, L., Nipoti, R., Summonte, C., Cohen, C. and Siejka, J., E-MRS meeting 15, 273 (Les editions de Physique, Paris, 1987).Google Scholar
13. Kato, S., Nagahori, T. and Matsumoto, S., J. Appl. Phys. 62, 3656 (1987).Google Scholar
14. Sameshima, T., Usui, S. and Sekiya, M., J. Appl. Phys. 62, 711 (1987).Google Scholar
15. de Unamuno, S. and Foragassy, E., Appl. Surf. Sci. 36 1 (1989).Google Scholar
16. Coe, C., Sol. State Electon. 20, 985 (1977)Google Scholar