Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-26T21:22:18.014Z Has data issue: false hasContentIssue false

Characterisation of PZT in Thin Film Bulk Acoustic Wave Resonators

Published online by Cambridge University Press:  01 February 2011

Janine Conde
Affiliation:
janine.conde@epfl.ch, EPFL, Materials science, EPFL STI IMX LC, MXD 231 (Bâtiment MX), Station 12, Lausanne, 1015, Switzerland
Paul Muralt
Affiliation:
paul.muralt@epfl.ch, EPFL, Lausanne, 1015, Switzerland
Get access

Abstract

Pb(Zr0.53, Ti0.47)O3 (PZT) thin films are potentially interesting as piezoelectric layer in bulk acoustic wave (BAW) resonators. We investigated properties and performance of {111} and {100} textured, dense films deposited by sol-gel techniques in the frequency range of 1 to 2 GHz. The resonators were fabricated on Si wafers using deep silicon etching to create a membrane structure and using platinum as top and bottom electrodes. The best response of the resonators was observed at a bias voltage of −15kV/cm with values of around 10% for the coupling constant and around 50 for the quality factor. This voltage corresponds to the maximal value of the piezoelectric constant d33 and minimal value of the dielectric permittivity measured as a function of the electric field. Resonance and antiresonance frequencies were strongly influenced by a bias voltage, showing a hysteretic behaviour as expected for ferroelectrics. Both of these frequencies shifted in the same direction. As a consequence, the dc voltage can be potentially used to shift the whole band of a filter. In unipolar operation, the coupling constant could be varied from 6 to 10 %. Materials parameters were extracted from the admittance as a function of frequency. Dielectric, piezoelectric and elastic properties of textured PZT films are reported and compared to direct (low frequency) measurements and to literature values. It was found that PZT thin films have lower stiffness than the one of PZT bulk ceramics and it was observed that {111}-textured films are stiffer than {100}-textured films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lakin, K. M. in Proc. IEEE Int. Freq.Control Symp. and Exhibition, 2003, 765.Google Scholar
2. Loebl, H.P. Metzmacher, C. Milsom, R.F. Straten, F. Van, and Tuinhout, A. J. Electroceram., vol. 12, 109, 2004.Google Scholar
3. Dubois, M.-A. Billard, Ch., Muller, C. Parat, G. Vincent, P. in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2005, 392.Google Scholar
4. Schreiter, M. Gabl, R. Pitzer, D. and Wersing, W. J. Euro.Ceram. Soc., vol. 24, 1589, 2004.Google Scholar
5. Larson, J. D. III, Gilbert, S. R. and Xu, B. in Proc. IEEE Ultrason. Symp., 2004, 173.Google Scholar
6. Su, Q. X. Kirby, P. Komuro, E. Imura, M. Zhang, Q. and Whatmore, R. IEEE Trans. Microwave Theory and Tech., vol. 49, 769, 2001.Google Scholar
7. Loebl, H. P. Klee, M. Milsom, R. Dekker, R. Metzmacher, C. Brand, W. and Lok, P. J. Euro. Ceram. Soc., vol. 21, 2633, 2001.Google Scholar
8. Hanajima, N. Tsutsumi, S. Yonezawa, T. Hashimoto, K. Nanjo, R. and Yamaguchi, M. Jpn. J. Appl. Phys., vol. 36, 6069, 1997.Google Scholar
9. Foster, F. C. Ryan, L. K. and Turnbull, D.H. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol 38., no. 5, 446, 1991.Google Scholar
10. Lanz, R. and Muralt, P. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol 52., no. 6, 936, 2005.Google Scholar
11. Muralt, P. Maeder, T. Sagalowicz, L. Hiboux, S. Scalese, S. Naumovic, D. Agostino, R.G. Xanthopoulos, N., Mathieu, H.J. Patthey, L. and Bullock, E.L. J. Appl. Phys., vol. 83, 3835, 1998.Google Scholar
12. Ledermann, N. Muralt, P. Baborowski, J. Gentil, S. Mukati, K. Cantoni, M. Seifert, A. and Setter, N. Sens. Actuators A, vol.105, 162, 2003.Google Scholar
13. Calame, F. Muralt, P. Appl. Phys. Lett., vol.90, 062907, 2007.Google Scholar
14. Kholkin, A.L. Wütchrich, Ch., Taylor, D.V. and Setter, N. Rev.Sci.Instrum., vol 67(5), 1935, 1996.Google Scholar
15. Lakin, K. M. Kline, G. R. and McCarron, K. T. IEEE Trans. Microwave Theory Tech., vol. 41, no. 12, 2139, 1993.Google Scholar
16. Sherrit, S. Wiederick, H.D. Mukherjee, B.K. and Sayer, M. J. Phys. D: Appl. Phys., vol.30, 2354, 1997.Google Scholar
17. Sherrit, S. Wiederick, H.D. Mukherjee, B.K. and Sayer, M. in Proc. SPIE, 1997, vol. 3040, 99.Google Scholar
18. Lukacs, M. Olding, T. Sayer, M. Tasker, R. and Sherrit, S. J. Appl. Phys., vol. 85(5), 2835, 1999.Google Scholar
19. Trolier-McKinstry, S., and Muralt, P. J. Electroceram., vol. 12, 7, 2004 Google Scholar
20. Kholkin, A. Colla, E. Brooks, K. Muralt, P. Kohli, M. Maeder, T. Taylor, D. and Setter, N. Microel. Eng., vol. 29, 261, 1995.Google Scholar
21. Hiboux, S. Muralt, P. Maeder, T. J. Mater. Res., vol. 14, 4307, 1999.Google Scholar
22. J, Conde, Muralt, P. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., in press.Google Scholar