Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T07:29:47.679Z Has data issue: false hasContentIssue false

Cross Sectional Transmission Electron Microscopy Study of Obliquely Evaporated Silicon Oxide thin Films

Published online by Cambridge University Press:  25 February 2011

A. Barna
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest, P.O.Box 76, H-1325 Hungary
O. Geszti
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest, P.O.Box 76, H-1325 Hungary
L. Gosztola
Affiliation:
Research Institute for Technical Physics of the Hungarian Academy of Sciences, Budapest, P.O.Box 76, H-1325 Hungary
E. Seyfried
Affiliation:
Enterprise for Microelectronics, Budapest, P.O.Box 21, H-1325 Hungary
Get access

Abstract

The columnar structure in obliquely evaporated silicon oxide layers was investigated by transmission electron microscope (TEM). For TEM studies of these layers, samples were made by low angle ion-beam thinning of cross-sections, the planes of which were determined by the normal of the film and the direction of evaporation. Increasing the angle of evaporation from 5° to 30° (measured from the plane of the substrate), a change from a well–defined columnar structure to a striated structure was observed, for layers evaporated both under “low-rate” and “high-rate” conditions. There is a clear-cut dependence of the orientation of columns (αc) upon the angle of evaporation (α), however deviating from the “tangent rule” (tanαc=2tanα).

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Janning, J.L., Appl.Phys. Lett. 21, 173 (1973).Google Scholar
2. Johnson, M.R. and Penz, P.A., IEEE-Trans Electron Devices 24, 805 (1977).CrossRefGoogle Scholar
3. Dixon, G. D., Brody, T. P., Hester, W. A.; Appl. Phys. Lett. 24 47 (1974)Google Scholar
4. Pollack, J. M., Haas, W. E., Adams, J. E., J.Appl. Phys. 48,831 (1977)Google Scholar
5. Yamashita, M. and Amemiya, Y., Jpn. J. Appl. Phys. 15, 2087 (1976)CrossRefGoogle Scholar
6. Crossland, W. A., Morrisy, J. M., Needham, B., J. Phys.D 9, 2001 (1976)Google Scholar
7. Goodman, L. A., McGinn, J. T., Anderson, C. H., Digeronimo, F., IEEE Trans.Electron Devices 24, 795 (1977)Google Scholar
8. Armitage, D., J. Appl. Phys. 51, 2552 (1980)Google Scholar
9. Cheng, J., Boyd, G. D., StorTz, F. G., Appl. Phys. Lett. 37, 716 (1980)Google Scholar
10. van Sprang, H. A. and Aartsen, R. G., J. Appl. Phys. 56 251 (1984)Google Scholar
11. Barna, A., in Proc. 8th European Congr. on Electron Microscopy, edited by Csanady, A. et al. (Programme Committee at the Eight European Congress on Electron Microscopy, Budapest, 1984) p. 107.Google Scholar
12. Barna, P. B., in Proc. IX. IVC-V ICSS, edited by de Segovia, J. L. (Asociacion Espanola del Vacio y sus Aplicaciones, Madrid 1983) p. 382.Google Scholar
13. Urbach, W., Boix, M., Guyon, E., Appl. Phys. Lett. 25, 479 (1974)CrossRefGoogle Scholar
14. Nieuwenhuizen, J. M. and Haanstra, H. B., Philips Tech. Rev., 27, 87 (1966).Google Scholar
15. Wilson, T., Boyd, G. D., Thurston, R. N., Cheng, J., Storz, F. G., lTWesterwick, E., IEEE Trans. Electron Devices 30, 513 (1983)Google Scholar
16. Dirks, A. G. and Leamy, H. J., Thin solid Films, 47, 219 (1977).Google Scholar
17. Geszti, T. (private communication)Google Scholar