Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-19T14:11:52.786Z Has data issue: false hasContentIssue false

Crystal Phases of Glass-Forming Mixtures

Published online by Cambridge University Press:  11 February 2011

Julián R. Fernández
Affiliation:
School of Chemistry, University of Sydney, New South Wales, 2006, Australia
Peter Harrowell
Affiliation:
School of Chemistry, University of Sydney, New South Wales, 2006, Australia
Get access

Abstract

We compare the potential energy at zero temperature of a range of crystal structures for a glass-forming binary mixture of Lennard-Jones particles. The lowest energy ordered state consists of coexisting phases of a single component face centered cubic structure and an equimolar cesium chloride structure. An infinite number of layered crystal structures are identified with energies close to this groundstate. We demonstrate that the finite size increase of the energy of the coexisting crystal with incoherent interfaces is sufficient to destabilize this ordered phase in simulations of typical size. Specific local coordination structures are identified as of possible structural significance in the amorphous state. We observe rapid crystal growth in mixtures near the equimolar composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fernández, J. R. and Harrowell, P., Phys. Rev. E 67, 011403 (2003).Google Scholar
2. Gaskell, P. H., Mineral. Mag. 64, 425 (2000).Google Scholar
3. Köster, U. and Herold, U., Glassy Metals I (Topics in Applied Physics, v.46), ed. Güntherodt, H. and Beck, H. (Springer-Verlag, Berlin, 1981), p. 225;Google Scholar
Mashuhr, A., Waniuk, T., Busch, R. and Johnson, W. L., Phys. Rev. Lett. 82, 2290 (1999);Google Scholar
Liu, W., Johnson, W. L., Schneider, S., Geyer, U. and Thiyagarajan, P., Phys. Rev. B 59, 11755 (1999).Google Scholar
4. Pusey, P. N. and van Megen, W., Nature 320, 340 (1986);Google Scholar
Pusey, P. N. and van Megen, W. Phys. Rev. Lett. 59, 2083 (1987);Google Scholar
Henderson, S. I. and van Megen, W., Phys. Rev. Lett. 80, 877 (1998).Google Scholar
5. Harrowell, P. and Oxtoby, D., Ceramic Trans. 30, 35 (1993).Google Scholar
6. Kob, W., and Andersen, H. C., Phys. Rev. E 51, 4626 (1995).Google Scholar
7. Sastry, S., Debenedetti, P. and Stillinger, F. H., Nature 393, 554 (1998);Google Scholar
Sastry, S., Debendetti, P., Stillinger, F., Schroder, T., Dyre, J. and Glotzer, S., Physica A 270, 301 (2003).Google Scholar
8. Della Valle, R., Gazzillo, D. and Pastore, G., Mater. Sci. Eng. A 165, 183 (1993).Google Scholar
9. Bernu, B., Hansen, J. P., Hiwatari, Y. and Pastore, G., Phys. Rev. A 36, 4891 (1987);Google Scholar
Odagaki, T., Matsui, J. and Hiwatari, Y., Phys. Rev. E 49, 3150 (1994).Google Scholar
10. Yamamoto, R. and Onuki, A., Phys. Rev. E 58, 3515 (1998).Google Scholar
11. Carruzzo, H. and Yu, C., Phys. Rev. E 66, 021204 (2003).Google Scholar
12. Deng, D., Argon, A. and Yip, S., Philos. Trans. R. Soc. London Ser. A 329, 549 (1989):Google Scholar
Deng, D., Argon, A. and Yip, S., Philos. Trans. R. Soc. London Ser. A 329, 575 (1989);Google Scholar
Deng, D., Argon, A. and Yip, S., Philos. Trans. R. Soc. London Ser. A 329, 595 (1989);Google Scholar
Deng, D., Argon, A. and Yip, S., Philos. Trans. R. Soc. London Ser. A 329, 613 (1989).Google Scholar
13. Perera, D. N. and Harrowell, P., Phys. Rev. E 59, 5721 (1999).Google Scholar
14. Vlot, M., Huitema, H., de Vooys, A. and van der Eerden, E., J. Chem. Phys. 107, 4345 (1997).Google Scholar
15. Middleton, T. F., Hernández-Rojas, J., Mortenson, P. N., and Wales, D. J., Phys. Rev. B 64, 184201 (2001).Google Scholar
16. Weber, T. A., and Stillinger, F. H., Phys. Rev. B 31, 1954 (1985).Google Scholar
17. Constitution of Binary Alloys, 2nd ed., edited by Hansen, M. and Anderko, K. (McGraw-Hill, New York, 1958).Google Scholar
18. Bond, S. D., Leimkihler, B. J., and Laird, B. B., J. Comp. Phys. 151, 114 (1999).Google Scholar
19. Sturgeon, J. B., and Laird, B. B., J. Chem. Phys. 112, 3474 (2000).Google Scholar
20. This value of the amorphous state energy at T=0 comes from the constant density calculations of Middleton et al. [15]. No value of the pressure was provided. Sastry et al [24] noted that the pressure of the amorphous state for the KA potential at the same density becomes negative at a temperature below 0.06. We have therefore compared this energy with our own zero pressure calculations in the belief that it is at a pressure close to zero.Google Scholar
21. Schultz, L. and Eckert, J., Glassy Metals III(Topics in Applied Physics, v. 72), ed. Beck, H. and Güntherodt, H. (Springer-Verlag, Berlin, 1994), p. 69.Google Scholar
22. Cargill, G. S., J. Appl. Phys. 41, 12 (1970).Google Scholar
23. Vollmayr, K., Kob, W. and Binder, K., J. Chem. Phys. 105, 4714 (1996).Google Scholar
24. Sastry, S., Debenedetti, P. G. and Stillinger, F. H., Nature 393, 554 (1998).Google Scholar