Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-01T06:01:58.154Z Has data issue: false hasContentIssue false

Crystalline and Electrical Properties of AlInN/GaN and AlN/GaN superlattices on GaN Grown by Metalorganic Vapor Phase Epitaxy

Published online by Cambridge University Press:  21 March 2011

Shigeo Yamaguchi
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
Yasuo Iwamura
Affiliation:
Department of Electrical, Electronic and Information Engineering, Kanagawa University 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan
Masayoshi Kosaki
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Yasuhiro Watanabe
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Shingo Mochizuki
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Tetsuya Nakamura
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Yohei Yukawa
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Shugo Nitta
Affiliation:
Dept. Electrical and Electronic Engineering, Meijo University
Satoshi Kamiyama
Affiliation:
Dept. Materials Science and Engineering and High-Tech Research Center, Meijo University
Hiroshi Amano
Affiliation:
Dept. Materials Science and Engineering and High-Tech Research Center, Meijo University
Isamu Akasaki
Affiliation:
High-Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, 468-8502, Japan
Get access

Abstract

We have studied the crystalline and electrical properties of AlInN/GaN superlattices (SLs) and strained AlN/GaN SLs on GaN grown by metalorganic vapor phase epitaxy. A (0001) sapphire substrate was used. The SLs were grown using N2 carrier gas. X-ray analysis showed the eighth order satellite peak in AlInN/GaN SLs. Hall measurement showed an electron mobility of 946 cm2/Vs at highest (a sheet carrier density of 2.9x1012 cm-2) for AlInN/GaN 5SLs on GaN at 295K, and showed a value of 11432 cm2/Vs (1.99x1012cm-2) at 170K, and a value of 2610 cm2/Vs (3.38x1012cm-2) at 295K for AlN/GaN 10SLs on GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
2. Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Hove, J. V., and Redwing, J., Elect. Lett. 33, 1240 (1997).Google Scholar
3. Smorchkova, I. P., Keller, S., Heikman, S., Elsass, C. R., Heying, B., Fini, P., Speck, J. S., and Mishra, U. K., Appl. Phys. Lett. 77, 3998 (2000).Google Scholar
4. Ridley, B. K., Ambacher, O., and Eastman, L. F., Semicond. Sci. Technol. 15, 270 (2000).Google Scholar
5. Gaska, R., Yang, J. W., Osinsky, A., Chen, Q., Khan, M. A., Orlov, A. O., Snider, G. L., and Shur, M. S., Appl. Phys. Lett. 72, 707 (1998).Google Scholar
6. Wang, T., Ohno, Y., Lachab, M., Nakagawa, D., Shirahama, T., Sakai, S., and Ohno, H., Appl. Phys. Lett. 74, 3531 (1999).Google Scholar
7. Keller, S., Parish, G., Fini, P. T., S. Heikman, C. -H. Chen, Zhang, N., DenBaars, S. P., Mishra, U. K., and Wu, Y.-F., J. Appl. Phys. 86, 5850 (1999).Google Scholar
8. Smorchkova, I. P., Elsass, C. R., Lbbetson, J. P., Vetury, R., Heying, B., Fini, P., Haus, E., DenBaars, S. P., Speck, J. S., and Mishra, U. K., J. Appl. Phys. 86, 4520 (1999).Google Scholar
9. Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Sierakowski, A. J., Schaff, W. J., and Eastman, L. F., J. Appl. Phys. 87, 334 (2000).Google Scholar
10. Dimitrov, R., Murphy, M., Smart, J., Schaff, W., Shealy, J. R., Eastman, L. F., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 87, 3375 (2000).Google Scholar
11. Elass, C. R., Smorchkova, I. P., Heying, B., Haus, E., Poblenz, C., Fini, P., Maranowski, K., Petroff, P. M., DenBaars, S. P., Mishra, U. K., Speck, J. S., Saxler, A., Elhamri, S., and Mitchel, W. C., Jpn. J. Appl. Phys. 39, L1023 (2000).Google Scholar
12. Webb, J. B., Tang, H., Bardwell, J. A., and Coleridge, P., Appl. Phys. Lett. 78, 3845 (2001).Google Scholar
13. Yu, T.-H. and Brennan, K. F., J. Appl. Phys. 89, 3827 (2001).Google Scholar
14. Yamaguchi, S., Kariya, M., Nitta, S., Amano, H., and Akasaki, I., Appl. Phys. Lett. 75, 4106 (1999).Google Scholar
15. Kariya, M., Nitta, S., Kosaki, M., Yukawa, Y., Yamaguchi, S., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 39, L143 (2000).Google Scholar
16. Yamaguchi, S., Kariya, M., Kashima, T., Nitta, S., Kosaki, M., Yukawa, Y., Amano, H., and Akasaki, I., Phys. Rev. B64, 035318 (2001).Google Scholar
17. Yamaguchi, S., Kariya, M., Kosaki, M., Yukawa, Y., Nitta, S., Amano, H., and Akasaki, I., J. Appl. Phys. 89, 7820 (2001).Google Scholar
18. Yamaguchi, S., Kosaki, M., Watanabe, Y., Yukawa, Y., Nitta, S., Amano, H., and Akasaki, I., Appl. Phys. Lett. 79, 3062 (2001).Google Scholar