Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T17:30:02.061Z Has data issue: false hasContentIssue false

Defects Created by 25 keV Hydrogen Implantation in n-type GaN

Published online by Cambridge University Press:  21 March 2011

F. D. Auret
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa.
W. E. Meyer
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa.
H. A. van Laarhoven
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa.
S. A. Goodman
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa.
M. J. Legodi
Affiliation:
Physics Department, University of Pretoria, Pretoria 0002, South Africa.
B. Beaumont
Affiliation:
CRHEA-CNRS, Valbonne, France.
P. Gibart
Affiliation:
CRHEA-CNRS, Valbonne, France.
Get access

Abstract

We have studied defects introduced in n-GaN during 25 keV hydrogen and 40 keV He implantation using deep level transient spectroscopy (DLTS). These measurements revealed that 25 keV hydrogen implantation introduces a complex set of electron traps, of which most are different to the defects observed after high-energy (MeV) electron and proton implantation. At least three of the defects detected after 25 keV proton implantation exhibit a metastable character in that they can be reproducibly removed and re-introduced during reverse and zero bias anneal cycles. Isochronal and isothermal annealing experiments yielded low activation energies of approximately 0.1 – 0.2 eV for both processes. By comparison, 40 keV He ion implantation introduced the same metastable defects, but in different relative concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushida, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K., Appl. Phys. Lett. 72, 211 (1998).Google Scholar
2. Hierro, A., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U. K. and DenBaars, S. P., Appl. Phys. Lett. 77, 1499 (2000).Google Scholar
3. Auret, F. D., Goodman, S. A., Koschnick, F. K., Spaeth, J.-M., Beaumont, B., Gibart, P., Appl. Phys. Lett. 74 407 (1999).Google Scholar
4. Ziegler, J. F., Biersack, J. P., Littmark, U., in: Ziegler, J. F. (Ed.), Stopping and Ranges of Ions in Solids, Vol. 1, Pergamon Press, New York, 1985.Google Scholar
5. Auret, F. D., Goodman, S. A., Legodi, M. J., Meyer, W. E., NIMB B 148 474 (1999).Google Scholar
6. Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., Molnar, R. J., Phys. Rev. Lett. 79 2273 (1997).Google Scholar
7. Fang, Z-Q., Look, D. C., Kim, W., Fan, Z., Botchkarev, A., Morkoc, H., Appl. Phys. Lett. 72 2277 (1998).Google Scholar
8. Auret, F. D., Meyer, W. E., Goodman, S. A., Koschnick, F. K., Spaeth, J.-M., Beaumont, B., Gibart, P., Physica B 273–274 92 (1999)Google Scholar