Skip to main content

Evaluation Of The Capacity Of Granulation In Surgical Wounds with Condensed Tannins in Matrices Tio2.

  • José Albino M. Rodrìguez (a1), José Rutilio M. López (a1), Genaro C. Gutiérrez (a1), Marco-Antonio G Coronel (a1), Enrique S. Mora (a2), Lilián-Aurora M Rodríguez (a3) and Fernando M. Rodríguez (a4)...

The nanoencapsulation in biocompatible inorganic materials with human cell activity is a leading technology to control the process of releasing the drug in the right place. At present, the sol-gel process has emerged as a promising platform for the immobilization, stabilization and encapsulation of biological molecules such as enzymes, antibodies, microorganisms, and a variety of drugs. The matrices obtained are chemically inert, hydrophilic and easy synthesis. They have high mechanical strength, thermal stability in wide temperature ranges and absorb organic solvents so insignificant compared with other organic polymers. They are resistant to microbial attack and exhibit high biocompatibility with the body, as provided for implantation in situ in the treatment of various diseases. An additional advantage is that it provides viability encapsulated molecules, since these matrices act as reservoirs of water thus helping to maintain the biological activity of enzymes, antibodies, cells, and drugs for the moisture level required for the molecule. We used the action of the active ingredients of tepezcohuite (condensed tannins) to assess the capacity aseptic surgical wound healing than 1 cm in diameter in New Zealand white rabbits. Experimentally and statistically demonstrating the effectiveness of healing nanoreservoirs Tan/TiO2-150 the weight of tannins by 60% compared to condensed tannins as such, TiO2and isotonic saline.

Hide All
1. Zapata D. M., Estrada A., “Calidad de vida relacionada con la salud de las personas afectadas por quemaduras después de la cicatrización”, Medellín, Colombia, Biomédica 30, 492500 (2010).
2. Cuadrac A., Pineros J.L., Roa R., Rev. Med. Clin. CONDES 21(1), 4145 (2010).
3. Camargo-Ricalde S.L., “Descripción, distribución, anatomía, composición química y usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México”, Rev. biol. Trop, 48 4 (2000).
4. Morales B., Pérez J.A., “Manual de identificación de árboles de selva baja mediante cortezas”, Cuadernos No. 6. Inst. Biología, UNAM, 83 México (1990).
5. Navarro J.R.. “Propiedades farmacológicas y extracción de principios activos de la corteza del tepezcohuite”. Tesis de licenciatura, UAM-I, marzo (1988).
6. Anton R., Jiang Y., Weniger B., Beck J. P. and Rivier L., “Pharmacognosy of Mimosa tenuiflora, (Willd.) Poiret.” J. Ethnopharmacol. 38, 153157 (1993).
7. Lozoya M. M., Lozoya X. and González J.L., “Propiedades farmacológicas in vitro de algunos extractos de Mimosa tenuiflora (tepescohuite)”. Arch. Invest. Méd, 21, 163169 (1990).
8. Urióstegui A., “Algunas plantas curativas de Taxco, Guerrero, México”, Tlahui-Medic, 2, 26 (2008).
9. Founai J., “Actividad Bacteriológica, Fisiológica y su uso en Cosmetología del Tepezcohuite”. Facultad de Farmacia. Universidad del sur de París, 1 (1990).
10. Founai J., Facultad de Farmacia. “Reporte de la evaluación de la actividad bacteriostática del tepezcohuite”. Universidad de París 1 (1991).
11. Laboratorio Industrial de Biología, “Análisis General del Tepezcohuite”, París, Francia. (1991).
12. Safepharm Laboratories Ltda, “Examen de Toxicidad del Tepezcohuite”, Londres, Inglaterra, 1 (1991).
13. Instituto Mexicano del Seguro Social, “Reporte sobre el Efecto Antimicrobiano de los Extractos de la Corteza del Tepezcohuite”, 1, (1991).
14. Macédo. M. R., Vieira Pereira S., Filgueiras L., Vieira A., Guedes O., “Atividade Antimicrobiana e Antiaderente do Extrato da Mimosa tenuifl ora (Willd). Poir. Sobre Microrganismos do Biofilme Dentário”, Pesq. Bras. Odontoped Clin. Integr. João Pessoa, 9 2, 161165 (2009).
15. López T., Ortiz-Islas E., Vinogradova E., Manjarrez J., Azamar J.A., Alvarado-Gil J. J. and Quintana P., “Optical Materials Structural, Optical andVibracional Properties of Sol-Gel Titania Valproic Acid Reservoirs”, 29, 8287 (2006).
16. López T., Basaldella E. I., Ojeda M.L., Manjarrez J. and Alexander-Katz R., “Optical Materials Encapsulation of valproic acid and sodicphenytoine in ordered mesoporous SiO2 solids for the treatment of temporal lobe epilepsy”, 29, 7581 (2006).
17. López T., Manjarrez J., Rembao D., Vinogradova E., Moreno A., González R. D., “An implantable sol-gel derived titania-silica carrier system for the controlled release of anticonvulsants”, Mat. Lett 60, 29032908, (2006).
18. Peterson A., López T., Ortiz-Islas E. and González R.D., “Pore structures in an implantable sol-gel Titania ceramic device used in controlled drug release applications: A modeling study”, Applied Surface Science 253, 57675771, (2007).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 157 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th February 2018. This data will be updated every 24 hours.