Skip to main content
×
Home
    • Aa
    • Aa

Obtaining Circularly Polarized Optical Spots Beyond the Diffraction Limit Using Plasmonic Nano-Antennas

  • Erdem Ogut (a1), Gullu Kiziltas (a2) and Kursat Sendur (a3)
Abstract
Abstract

With advances in nanotechnology, emerging plasmonic nano-optical applications, such as all-optical magnetic recording, require circularly-polarized electromagnetic radiation beyond the diffraction limit. In this study, a plasmonic cross-dipole nano-antenna is investigated to obtain a circularly polarized near-field optical spot with a size smaller than the diffraction limit of light. The performance of the nano-antenna is investigated through numerical simulations. In the first part of this study, the nano-antenna is illuminated with a diffraction-limited circularly-polarized radiation to obtain circularly polarized optical spots at nanoscale. In the second part, diffraction limited linearly polarized radiation is used. An optimal configuration for the nano-antenna and the polarization angle of the incident light is identified to obtain a circularly polarized optical spot beyond the diffraction limit from a linearly polarized diffraction limited radiation.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2 J. M. Kikkawa and D. D. Awschalom , Science 287, 473476 (2000).

3 S. Neale , M. Macdonald , K. Dholakia , and T. F. Krauss , Nature 4, 530533 (2005).

4 Y. Matsuhisa , Y. Huang , Y. Zhou , and S. T. Whu , Opt. Express 15, 626–622 (2007).

5 R. Hassey , E. J. Swain , N. I. Hammer , D. Venkataraman , and M. D. Barnes , Science 314, 14371439 (2006).

6 N. Yu , Q. Y. Wang , C. Pflugl , L. Diehl , F. Capasso , T. Edamura , S. Furuta , M. Yamanishi , and H. Kan , Appl. Phys. Lett. 94, 151101 (2009).

7 C. D. Stanciu et al., Phys. Rev. Lett. 99, 047601 (2007).

8 J. Hohlfeld , C. D. Stanciu , and A. Rebei , Appl. Phys. Lett. 94, 152504 (2009).

9 Y. Ohdaira , T. Inoue , H. Hori , and K. Kitahara , Opt. Express 16, 29152921 (2008).

10 R. D. Grober , R. J. Schoelkopf , and D. E. Prober , Appl. Phys. Lett. 70, 13541356 (1997).

11 K. Sendur and W. Challener , J. Microsc. 210, 279283 (2003).

12 K. B. Crozier , A. Sundaramurthy , G. S. Kino , and C. F. Quate , J. Appl. Phys. 94, 4632 (2003).

14 P. Muhlschlegel et al., Science 308, 16071609 (2005).

15 L. Novotny , Phys. Rev. Lett. 98, 266802, (2007).

16 F. Jackel , A. A. Kinkhabwala , and W. E. Moerner , Chem. Phys. Lett. 446, 339343 (2007).

18 K. Sendur and E. Baran , Appl. Phys. B 96, 325335 (2009).

19 E.D. Palik , Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 17 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th March 2017. This data will be updated every 24 hours.