Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-18T20:20:59.908Z Has data issue: false hasContentIssue false

Divalent and Trivalent Europium Doped Alumina Waveguides Elaborated by Pulsed Laser Deposition

Published online by Cambridge University Press:  21 March 2011

Anne Minardi
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Luminescents, CNRS-Université Lyon I 10 rue Ampère, 69622 Villeurbanne Cedex, France
Claudine Garapon
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Luminescents, CNRS-Université Lyon I 10 rue Ampère, 69622 Villeurbanne Cedex, France
Jacques Mugnier
Affiliation:
Laboratoire de Physico-Chimie des Matériaux Luminescents, CNRS-Université Lyon I 10 rue Ampère, 69622 Villeurbanne Cedex, France
Corinne Champeaux
Affiliation:
Laboratoire de Science des Procédés Céramiques et Traitements de Surface, CNRS-Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
Get access

Abstract

Europium doped alumina Al2O3optical waveguides were prepared by pulsed laser deposition (PLD) using a KrF laser. The targets were obtained by sintering doped powders synthesized by a sol-gel method. Depending on the oxygen pressure used during the deposition, Eu3+ (for 0.1 mbar) or Eu2+ (for 10−5 mbar) are obtained in the films. Two kinds of Eu2+ ions are present, with a 4f-5d broad excitation band peaking at 330 nm and emission bands located at 490 nm or 585 nm respectively. For Eu3+ doped films, the usual 5D0 to the 7FJ multiplets emission spectra were observed. The emission lines are strongly inhomogeneously broadened. Low temperature site selective fluorescence measurements were achieved in order to correlate the different Eu3+ sites observed with the structure of the films (amorphous or γ crystallized).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoven, G. N. van den, Koper, R. J. I. M., Polman, A., Dam, C. van, Uffelen, J. W. M. van, Smit, M. K., Appl. Phys. Lett. 68 1886 (1996)Google Scholar
2. Serna, R., Afonso, C. N., Appl. Phys. Lett. 69 1541 (1996)Google Scholar
3. Feofilov, S. P., Kapianskii, A. A., Zakharchenya, R. I., J. Lum. 72–74 41 1997 Google Scholar
4. Pillonnet, A., Garapon, C., Champeaux, C., Bovier, C., Brenier, R., Lou, L., Catherinot, A., Jacquier, B., Mugnier, J., J. Phys. IV 9 Pr 5 (1999)Google Scholar
5. Pillonnet, A., Garapon, C., Champeaux, C., Bovier, C., Brenier, R., Jaaffrezic, H., Mugnier, J., Appl. Phys. A 69 S735 (1999)Google Scholar
6. Pillonnet-Minardi, A., Marty, O., Bovier, C., Garapo, C., Mugnier, J., Opt. Mater. 16 9 (2001)Google Scholar
7. Blasse, G., Wanmaker, W. L., Vrugt, J. W. ter, Bril, A., Philips res. Rep. 23 189 (1968)Google Scholar
8. Jia, W., Yuan, H., Lu, L., Liu, H., Yen, W. M., J. Lum. 76–77 424 (1998)Google Scholar
9. Zhou, R. S., Snyder, R. L., Acta Cryst. B 47 617 (1991)Google Scholar
10. Pucker, G., Gatterer, K., Fritzer, H. P., Bettinelli, M., Ferrari, M., Phys. Rev. B 53 6225 (1996)Google Scholar
11. Minardi, A., Marty, O., Champeaux, C., Garapon, C., (to be published)Google Scholar
12. Schmidt, Th., Macfarlane, R. M., Völker, S., Phys. Rev. B 50 15707 (1994)Google Scholar