Skip to main content

Effect of Hydrogen on The Electronic Structure of a Grain Boundary In Iron

  • Genrich L. Krasko (a1), Ralph J. Harrison (a1) and G. B. Olson (a2)

LMTO-ASA calculations were performed on a 26-atom supercell model of a Σ3(111) grain boundary (GB) in bcc Fe. The supercell emulated two GB's with 11 (111)planes of Fe atoms between the GB planes. One of the GB's was clean, with a structural vacancy at the GB core in the center of a trigonal prism of Fe atoms, while on the other GB this site was occupied by a H atom. The interplanar spacings of the supercell were relaxed using a modified embedded atom method. As in the case of P and S in a similar GB environment in Fe there is only a weak interaction between H and nearest Fe atoms. Almost all the Fe d-states are nonbonding. A very weak covalent bond exists between H and Fe due to s-d hybridization, the hybrid bonding part located far below the Fermi energy. This bond is mostly of σ-type, connecting H with the Fe atoms in the GB plane; the δ-component of this bond across the GB is weaker. A weak electrostatic interaction attracts Fe-atoms across the clean GB, but results in repulsion if a H atom is present. The magnetic contribution to intergranular cohesion is decreased when H is present due the suppression of the magnetic moments of the nearest Fe atoms both in the GB plane and directly across the GB.

Hide All
1. Briant C. L. and Banerji S.K. in Embrittlement of Engineering Alloys (ed. Briant C. L. and Banerji S.K.) , Acad. Press, New York, 1983, p. 21;
1a.Guttmann M. and. McLean D. in Interfacial Segregations ( ed. Johnson W.C. and Blakely J. M.), ASM, Metals Park, OH, 1979, p. 261
2. The Theory of Stress Corrosion Cracking in Alloys (ed. Scully J. C.). NATO, Brussels,1971;
2b.Effect of Hydrogen on Behavior of Materials (ed. Thomson A. W. and Bernstein I. M.), A.I.M.E.. New York, 1976;
2c.Stress Corrosion Cracking and Hvdroaen Embrittlement of Iron Base Alloys (ed. Staehle R. W., Hochmann J. , McCright R. D. and Slater J. E.). NACE-5, Houston, Tex. , 1977;
2d.Hydrogen Deoradation of Ferrous Alloys (ed. Oriani R. A., Hirth J. P. and Smialowski M.). Noyes, Park Ridge, N.J.,1985
3. Troiano A. R., Trans. Am. Soc. Met. 52, 54 (1960)
4. Stark J. P. and Marcus H. L., Metall. Trans. A, 8A, 1423 (1977);
4a.Lee D. Y., Barrera E. V.,Stark J. P. and Marcus H. L., Metall. Trans. A, 15A, 1415 (1984)
5. Meyers C. L. Jr., Onoda G. Y., Levy A. V., and Kotfila R. J., Trans. Metall. Society of AIME,233, 720 (1965)
6. Seah M. P., J. Phys. F, 10, 1043 (1980)
7. McLellan R. B. and Coldwell D. W., Acta Metall. 23, 57 (1975)
8. Eberhart M. E., Johnson K. H. and Latanision R. M., Acta Metall. 32, 955 (1984);
8a.Eberhart M. E., Latanision R. M. and Johnson K. H. ,Acta Metall., 33, 1769 (1985)
9. Daw M. S. and Baskes M. I., Phys. Rev. Lett. 50,1285 (1983);
9a.Daw M. S. and Baskes M. I.,in Chemistry and Physics of Fracture (ed. Jones R. H. and Latanision R. M.), Martinus Nijhoff, 1987, p.196
10. Daw M. S. , Phys. Rev. B 39, 7441 (1989);
10a.Daw S. W. and Baskes M. I., Phys. Rev. B 29,6443(1984)
11. Hashimoto M., Ishida Y., Yamamoto R., Doyama M. and Fujiwara F., J. Phys. F. 11, L141(1981);
11a.Surface Sci. 144, 182 (1984);
11b.Hashimoto M., Ishida Y., Wakayama S., Yamamoto R., Doyama M. and Fujiwara F., Acta Met. 32, 13 (1984)
12. Crampin S., Vvedensky D. D., MacLaren J. M. and Eberhart M. E., Phys. Rev. B 40, 3413(1989)
13. Krasko G. L. and Olson G. B., Solid State Commun. 76, 247 (1990)
14. For references see Gelatt C. D. Jr., Ehrenreich H. and Weiss J. A., Phys. Rev. B 17, 1940 (1978)
15. Hashimoto M., Ishida Y., Yamamoto R., Doyama M. and Fujiwara T., Scripta Met.,16, 267 (1982);
15a.Hashimoto M., Ishida Y., Yamamoto R. and Doyama M. , Acta Met. 32, 1 (1984);
15b.Ishida Y. and Mori M., Journal de Physique, Colloque C4, 46, C4465 (1985)
16. Finnis M. W. and Sinclair J. E., Phil. Mag. A 50, 45 (1984);
16a.A53, 161 (1986)
17. Norskov J. K., Phys. Rev.B 26, 2875 (1982)
18. Andersen O. K., Jepsen O. and GIötzel D., in Highliahts of Condensed Matter Theory (ed. Bassani F., Fumi F. and Tosi M. P.) North Holland, New York, 1985;
18a.Andersen O. K., in Electronic Structure of Complex Systems. (ed. Phariseau P. and Timmerman W. M.)Plenum, New York, 1984, p. 11
19. Skriver H. L., The LMTO Method. Springer, Berlin, 1984
20. von Barth U. and Hedin L., J. Phys. C 5, 1629 (1972)
21. Sikka S. K., Vohra Y. K. and Chidambaram R., in Prooress in Materials Science (ed. Christian J. W., Haasen P. and Massalski T. B.), Pergamon Press, vol 27, 1982, p245
22. As for the s- components of the Fe impurity bands, they are merely "tails" of the selectron distribution in the H WS sphere.
23. Wang G. S. and Freeman A. F., Phys. Rev. B 24, 4364 (1981);
23a.Ohnishl S. and Freeman A. F., , Phys. Rev. B 28, 671 (1983)
24. Krasko G. L. and Olson G. B., in Innovations on Ultra-High-Strength Steel Technology (ed. Olson G. B., Azrin M. and Wright E. S.), Sagamore Army Materials Research Conference Proceedings, vol 34, U.S. Government Printing Office, Boston, MA, 1990, p. 677
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 33 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th January 2018. This data will be updated every 24 hours.