Skip to main content Accessibility help

Effect of Nano-to Micro-Scale Surface Topography on the Orientation of Endothelial Cells

  • P. Uttayarat (a1), Peter I. Lelkes (a2) and Russell J. Composto (a1)


The effect of grating textures on the alignment of cell shape and intracellular actin cytoskeleton has been investigated in bovine aortic endothelial cells (BAECs) cultured on a model cross-linked poly(dimethylsiloxane) (PDMS). Grating-textured PDMS substrates, having a variation in channel depths of 200 nm, 500 nm, 1 μm and 5 μm, were coated with fibronectin (Fn) to promote endothelial cell adhesion and cell orientation. As cells adhered to the Fn-coated surface, the underlying grating texture has shown to direct the alignment of cell shape, F-actin and focal contacts parallel to the channels. Cell alignment was observed to increase with increasing channel depths, reaching the maximum orientation where most cells aligned parallel to channels on 1-μm textured surface. Immunofluorescence studies showed that F-actin stress fibers and vinculin at focal contacts also aligned parallel to the channels. Cell proliferation was found to be independent of grating textures and the alignment of cell shape was maintained at confluence.



Hide All
1. Lamba, N. M. K. and Cooper, S. L., in Tissue engineering of vascular prosthetic grafts, edited by Zilla, P. and Greisler, H. P., (Landes Bioscience, 2004). pp. 553559.
2. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., and Ingber, D. E., Scinece 276, 1425 (1997).
3. Mathur, A. B., Chan, B. P., Truskey, G. A., and Reichert, W. M., J Biomed Mater Res Part A 66A, 729 (2003).
4. van Kooten, T. G. and von Recum, A. F., Tissue Engineering 5, 223 (1999).
5. Cook, A. D., Hrkach, J. S., Gao, N. N., Johnson, I. M., Pajvani, U. B., Cannizzaro, S. M., and Langer, R., J Biomed Mater Res 35, 513 (1997).
6. Murugesan, G., Ruegsegger, M. A., Kligman, F., Marchant, R. E., and Kottke-Marchant, K., Cell Comm and Adh 9, 59 (2002).
7. Sidouni, F.-Z., Nurdin, N., Chabrecek, P., Lohmann, D., Vogt, J., Xanthopoulos, N., Mathieu, H. J., Francois, P., Vaudaux, P., and Descouts, P., Surface Science 491, 355 (2001).
8. Jiang, X., Takayama, S., Qian, X., Ostuni, E., Wu, H., Bowden, N., LeDuc, P., Ingber, D., and Whitesides, G. M., Langmuir 18, 3273 (2002).
9. Nerem, R. M., J Biomech Eng 103, 172 (1981).
10. García, A. J., Vega, M. D., and Boettiger, D., Mol Biol Cell 10, 785 (1999).
11. Toworfe, G. K., Composto, R. J., Adams, C. S., Shapiro, I. M., and Ducheyne, P., J Biomed Mater Res 71A, 449 (2004).
12. Uttayarat, P., Toworfe, G., Lelkes, P. I., and Composto, R. J., J. Biomed Mater Res (2004).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed