Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-20T14:48:17.408Z Has data issue: false hasContentIssue false

Electrochemical intercalation of lithium in ternary metal molybdates MMoO4(M=Cu,Zn)

Published online by Cambridge University Press:  11 February 2011

Th. Buhrmester
Affiliation:
University of Technology Darmstadt, Department of Materials Science, Structure Research, Petersenstrasse 23, D-64287 Darmstadt, Germany Fax: +49 6151 16–60 23; E-mail: buhrmester@tu-darmstadt.de
N. N. Leyzerovich
Affiliation:
University of Technology Darmstadt, Department of Materials Science, Structure Research, Petersenstrasse 23, D-64287 Darmstadt, Germany Fax: +49 6151 16–60 23; E-mail: buhrmester@tu-darmstadt.de
K. G. Bramnik
Affiliation:
University of Technology Darmstadt, Department of Materials Science, Structure Research, Petersenstrasse 23, D-64287 Darmstadt, Germany Fax: +49 6151 16–60 23; E-mail: buhrmester@tu-darmstadt.de
H. Ehrenberg
Affiliation:
University of Technology Darmstadt, Department of Materials Science, Structure Research, Petersenstrasse 23, D-64287 Darmstadt, Germany Fax: +49 6151 16–60 23; E-mail: buhrmester@tu-darmstadt.de
H. Fuess
Affiliation:
University of Technology Darmstadt, Department of Materials Science, Structure Research, Petersenstrasse 23, D-64287 Darmstadt, Germany Fax: +49 6151 16–60 23; E-mail: buhrmester@tu-darmstadt.de
Get access

Abstract

Ternary oxides with general formula MMoO4 (where M is a 3d-transitional metal) were characterized as cathode materials for lithium rechargeable batteries by galvanostatic charge-discharge technique and cyclic voltammetry. The significant capacity fading after the first cycle of lithium insertion/removal takes place for different copper molybdates (standard a-CuMoO4and high-pressure modification CuMoO4 –III) corresponding to the irreversible copper reduction and formation of Li2MoO4 during the first discharge. X-ray powder diffraction data reveal the decomposition of pristine ZnMoO4 by electrochemical reaction, lithium zink oxide with the NaCl-type structure and Li2MoO3 seem to be formed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Christian, P. A., Carides, J.N., DiSalvo, F. J., Waszczak, J. V.. J. Electrochem. Soc. (1980), 127, 11, 23152319 Google Scholar
2. Besenhard, J. O., Heydecke, J., Wudy, E., Fritz, H.P., Foag, W.. Solid State Ionics, (1983), 8, 6165 Google Scholar
3. Tsumura, T., Inagaki, M.. Solid State Ionics, (1997), 104, 183189 Google Scholar
4. Yu, A., Kumagaj, N., Liu, Z., Lee, J.. Solid State Ionics, (1998), 106, 1118.Google Scholar
5. Sanchez, R. H., Trevino, L., Fuentes, A. F., Martinez-de la Cruz, A., Torres-Martinez, L. M.. J. Solid State Electrochem. (2000), 4, 210215.Google Scholar
6. Denis, S., Baudrin, E., Touboul, M., Tarascon, J.-M.. J. Elecrochem. Soc. (1997), 144, 4099 Google Scholar
7. Orsini, F., Baudrin, E., Denis, S., Dupont, L., Touboul, M., Guomard, D., Piffard, Y., Tarascon, J.-M.. Solid State Ionics, (1998), 107, 123133.Google Scholar
8. Di Pietro, B., Scrosati, B., Bonino, F., M. Layyari. J. Electrochem. Soc., (1979), 126, 5, 729731.Google Scholar
9. Bonino, F., Lazzari, M., Scrosati, B.. J. Electrochem. Soc., (1984), 131, 3, 610612.Google Scholar
10. Kim, S.-S., Ogura, S., Ikuta, H., Uchimoto, Y., Wakihara, M.. Solid State Ionics, (2002), 146, 249256.Google Scholar
11. Ehrenberg, H., Weitzel, H., Paulus, H., Wiesmann, M., Wltschek, G., Geselle, M., Fuess, H.. J. Phys. Chem. Solids, (1997), 58, 1, 153160.Google Scholar
12. Tali, R., Tabachenko, V. V., Kovba, L. M., Dem'janets, L. N.. Russ, H.. J. Inorg. Chem., (1991), 36, 927.Google Scholar
13. Wiesmann, M., Ehrenberg, H., Miehe, G., Peun, T., Weitzel, H., Fuess, H.. J. Solid State Chem., (1997), 132, 8897 Google Scholar
14. Izumi, F., in “The Rietveld Method” (Young, R.A., Ed.), Chap. 13. Oxford Univ. Press, Oxford, (1993)Google Scholar
15. Johnston, W. D., Heikes, R. R., Sestrich, D.. J. Phys. Chem. Solids, (1958), 7, 113 Google Scholar
16. James, A. C. W. P., Goodenough, J. B.. J. Solid State Chemisty, (1988), 76, 8796 Google Scholar
17. Shannon, R. D., Acta Crystallogr., Sect. A, (1976,) 32, 751 Google Scholar