Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-21T18:07:57.040Z Has data issue: false hasContentIssue false

ESR investigations on Ca perovskite

Published online by Cambridge University Press:  14 March 2011

M. Chipara
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
Sy-Hwang Liou
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
C. N. Borca
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
R. Shoemaker
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
S. Adenwalla
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
P. A. Dowben
Affiliation:
Department of Physics and Astronomy and the Center for Materials Research and Analysis, Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588-0111, USA
Get access

Abstract

Electron spin resonance studies on fine powders of La0.65Ca0.35MnO3, performed in the X band, are reported. The coexistence of paramagnetic and ferromagnetic phases, in a narrow temperature range close to the Curie temperature, is observed. The electron spin resonance measurements do not support the presence of bipolarons above the Curie temperature. Temperature dependence of the ESR linewidth is governed by the hopping of polarons and the corresponding activation energy is about 150 meV above TC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Anderson, P.W. and Hasagawa, H., Phys. Rev., 100, 675 (1955).10.1103/PhysRev.100.675Google Scholar
2. Coey, J. M. D. and Virett, M., Advances in Phys., 48, 2, 167 (1999).10.1080/000187399243455Google Scholar
3. Dai, P., Zhang, J., Mook, H. A., Liou, S. H., Dowben, P. A., and Plummer, E. W., Phys. Rev. B, 54, R3694 (1996).10.1103/PhysRevB.54.R3694Google Scholar
4. Zhang, J. D., McIlroy, D. N., Dowben, P. A., Liou, S. H., Sabirianov, R. F., and Jaswal, S. S., Sol. State Commun., 97, 1, 39 (1996).10.1016/0038-1098(95)00531-5Google Scholar
5. CKittel, h., Introduction to Solid State Physics, 7th ed. (John Wiley & Sons, New York, 1996) pp. 503.Google Scholar
6. Rivadulla, F., Hueso, L. E., Jardon, C., Vazquez-Vazquez, C., Lopez-Quintela, M. A., Rivas, J., Causa, M. T., Ramos, C. D., and Sanchez, R. D., J. Mag. Mag. Mat., 196–197, 470 (1999).10.1016/S0304-8853(98)00824-5Google Scholar
7. Ebbels, U., Wigen, P. E., and Ounadjela, K., J. Magn. Magn. Mat., 177–181, 1239 (1998).10.1016/S0304-8853(97)00309-0Google Scholar
8. Ivanshin, V. A., Deisenhofer, J., Nidda, H.-A. Krug Von, Loidl, A., Mukhin, A. A., Balbashov, A. M., and Eremin, M. V., Phys. Rev. B, 61, 9, 6213 (2000).10.1103/PhysRevB.61.6213Google Scholar
9. Rettori, C., Rao, D., Singley, J., Kidwell, D., Oseroff, S. B., Causa, M. T., Neumeier, J. J., McClellan, K. J., Cheong, S-W., and Schultz, S., Phys. Rev. B, 55, 5, 3083 (1997).10.1103/PhysRevB.55.3083Google Scholar
10. Ramachandran, J. S., Bhagat, S.M., and Peng, J.L., Sol. State Commun., 96, 3, 127 (1995).10.1016/0038-1098(95)00413-0Google Scholar
11. Borges, R. P., Ott, F., Thomas, R. M., Skumryev, V., Coey, J. M. D., Arnaudas, J. I., and Rann, L., Phys. Rev. B, 60, 18, 12847 (1999).10.1103/PhysRevB.60.12847Google Scholar