Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-21T23:07:53.418Z Has data issue: false hasContentIssue false

Field Emission from Carbon Systems

Published online by Cambridge University Press:  14 March 2011

John Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK, jr@eng.cam.ac.uk
Get access

Abstract

Electron field emission from diamond, diamond-like carbon, carbon nanotubes and nanostructured carbon is compared. It is found that in all practical cases that emission occurs from regions of positive electron affinity with a barrier of ∼5 eV and with considerable field enhancement. The field enhancement in nanotubes arises from their geometry. In diamond, the field enhancement occurs by depletion of grain boundary states. In diamond-like carbon we propose that it occurs by the presence of sp2-rich channels formed by the soft conditioning process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwoebel, P R, Brodie, I, J Vac Sci Technol B 13 1391 (1995)Google Scholar
2. Geis, M W, al, et, IEEE Trans ED Let 12 456 (1991)Google Scholar
3. Jaskie, J E, MRS Bulletin 21 (March 1996) p59 Google Scholar
4. Choi, W B, Chung, D S, Kang, J H, Kim, H Y, Jin, Y W, Han, I T, Lee, Y H, Jung, J E, Lee, N S, Park, G S, Kim, J M, App Phys Lett 75 3129 (1999)Google Scholar
5. Sakai, T et al. , Abstracts, Diamond Films (2000)Google Scholar
6. Rosen, R, Simendiger, W, Debbault, C, Shimoda, H, Fleming, L, Stoner, B, Zhou, O, App Phys Lett 76 1668 (2000)Google Scholar
7. Fransen, M J, Rooy, T L van, Kruit, P, App Surface Sci 146 312 (1999)Google Scholar
8. Merkulov, V I, al, et, Extended Abstracts of 11th International Vacuum Microelectronics Conference, (1998).Google Scholar
9. Himpsel, F J, Knapp, J S, VanVechten, J A, Eastman, D E, Phys Rev B 20 624 (1979)Google Scholar
10. Pate, B B, Stefan, P M, Binns, C, Jupiter, P J, Shek, M L, Lindau, I, Spicer, W E, J Vac Sci Technol 19 249 (1981)Google Scholar
11. Cui, J.B., Ristein, J, Ley, L, Phys. Rev. Lett. 81, 429 (1998).Google Scholar
12. Robertson, J., Mat Res Soc Symp Proc 417 217 (1997)Google Scholar
13. Robertson, J, Mat Res Soc Symp Proc 498 197 (1998)Google Scholar
14. Robertson, J., J. Vac. Sci. Technol. B 17,659 (1999).Google Scholar
15. Geis, M W, Twichell, J C, Lyszczarz, T M, J Vac Sci Technol B 14 2060 (1996).Google Scholar
16. Zhu, W, al, et, J Appl Phys 78 2707 (1995); Science 282 1471 (1998)Google Scholar
17. Talin, A A, Pan, L S, McCarty, K F, Felter, T E, Doerr, H J, Bunshah, R F, App Phys Lett 69 3842 (1996)Google Scholar
18. Lacher, F, Wild, C, Behr, D, Koidl, P, Diamond Related Mats 6 1111 (1997)Google Scholar
19. Krauss, A R, Gruen, D M, Zhou, D, McCauley, T G, Qin, L C, Corrigan, T, Auciello, O, Chang, R P H, Mat Res Soc Symp Proc 495 299 (1998)Google Scholar
20. Gröning, O., Küttel, O.M, Gröning, P, Schlapbach, L, J. Vac. Sci. Technol. B 17 1064 (1999).Google Scholar
21. Okano, K, Koizumi, S, Silva, S R P, Amaratunga, G A J, Nature 381 140 (1996)Google Scholar
22. Koizumi, S, Ozaki, H, Kamo, M, Sato, Y, Inuzuka, T, App Phys Lett 71 1065 (1997)Google Scholar
23. Sugino, T, Kimura, C, Kuriyama, K, Koizumi, S, Kamo, M, Phys Stat Solidi A 174 145 (1999)Google Scholar
24. Bandis, C., and Pate, B., Appl. Phys. Lett. 69, 366 (1996).Google Scholar
25. Okano, K, Yamada, T, Sawabe, A, Koizumi, S, Matsuda, R, Bandis, C, Chang, W, Pate, B B, App Surface Sci 146 274 (1999)Google Scholar
26. Karabutov, A.V., Frolov, V.D., Pimenov, S.M., and Konov, V.I., Diamond Relat. Mater. 8, 763 (1999).Google Scholar
27. Rakhimov, A T, Suetin, N V, Soldatov, E S, Timofeyev, M A, Trifonov, A S, Khanin, V V, Silzars, A, J Vac Sci Technol B 18 76 (2000)Google Scholar
28. Wang, C, Garcia, A, Ingram, D, Lake, M, Kordesch, M E, Electron Lett 27, 1459 (1991)Google Scholar
29. Xu, N.S., Tzeng, Y., and Latham, R.V., J. Phys. D 26, 1776 (1993).Google Scholar
30. Looi, H J, al, et, Carbon 37 801 (1999)Google Scholar
31. Robertson, J, Phys Rev B 53 16302 (1996); Prog Solid State Chem 21 199 (1991)Google Scholar
32. Amaratunga, G.A.J. and Silva, S.R.P., App. Phys. Lett. 68, 2529 (1996)Google Scholar
33. Satyanarayana, B.S., Hart, A., Milne, W.I., and Robertson, J., App. Phys. Lett. 71, 1430 (1997)Google Scholar
34. Hart, A, Satyanarayana, B.S., Robertson, J., and Milne, W.I., App. Phys. Lett. 74, 1594 (1999)Google Scholar
35. Cheah, L.K., Shi, X, Liu, E, Tay, B K, J. Appl. Phys. 85, 6816 (1999).Google Scholar
36. Forrest, R D, Burden, A P, Silva, A R P, Cheah, L K, Shi, X, App Phys Lett 73 3784 (1998)Google Scholar
37. Missert, N, Friedmann, T A, Sullivan, J P, Copeland, R G, App Phys Lett 70 1995 (1997)Google Scholar
38. Mercer, T W, DiNardo, N J, Rothman, J B, Siegal, M P, Friedmann, T A, Martinez-Miranda, L J, App Phys Lett 72 2244 (1998)Google Scholar
39. Coll, B.F., Jaskie, J.E., Markham, J.L., Menu, E.P., Talin, A.A., and Allmen, P. von, Mat. Res. Soc. Proc. 498, 185 (1998); A Talin et al, in ‘Amorphous Carbon, State of Art’, ed S R P Silva et al (World Scientific, Singapore 1999)Google Scholar
40. Ristein, J, Schafer, J, Ley, L, Diamond Related Mats 4 508 (1995)Google Scholar
41. Rupersinghe, N, G Amaratunga, A J, Diamond Related Mats (2000)Google Scholar
42. Ilie, A, Hart, A, Flewitt, A J, Robertson, J, Milne, W I, submitted to J App Phys (2000)Google Scholar
43. Chhowalla, M, Robertson, J, Chen, C W, Silva, S R P, Amaratunga, G A J, J App Phys 81 139 (1997)Google Scholar
44. Gröning, O., Küttel, O.M., Gröning, P., Schlapbach, L., Appl. Phys. Lett. 71, 2253 (1997).Google Scholar
45. Ilie, A, Yagi, T, Ferrari, A C, Robertson, J, Appl. Phys. Lett 76 2627 (2000).Google Scholar
46. Ferrari, A C, Robertson, J, Phys Rev B 61 14095 (2000)Google Scholar
47. Forbes, R G, this symposium (2000)Google Scholar
48. deHeer, W A, Chatelain, A, Ugarte, D, Science 270 1179 (1995)Google Scholar
49. Bonard, J M, Salvetat, J P, deHeer, W A, Forro, L, Chaletain, A, App Phys Lett 73 918 (1998)Google Scholar
50. Saito, Y et al. , App Surface Sci 146 345 (1999)Google Scholar
51. Zhu, W, Bower, C, Zhou, O, Kochanski, G, Jin, S, App Phys Lett 75 873 (1999)Google Scholar
52. Dean, K A, Chalamala, B R, App Phys Lett 75 3017 (1999)Google Scholar
53. Dean, K A, vonAllmen, P, Chamamala, B R, J Vac Sci Technol B 17 1959 (1999)Google Scholar
54. Groning, O, Kuttel, O M, Emmenegger, C, Groning, P, Schlapbach, L, J Vac Sci Technol B 18 665 (2000).Google Scholar
55. Chen, Y, Shaw, D T, Guo, L, App Phys Lett 76 2469 (2000)Google Scholar
56. Stratton, R, Phys Rev 135 A794 (1964)Google Scholar
57. Obratztsov, A N, Pavlovsky, I Y, Volkov, A P, J Vac Sci Technol B 17 674 (1999)Google Scholar
58. Ren, Z F et al. , Science 282 1105 (1998)Google Scholar
59. Nilsson, L, Groning, O, Emmenegger, C, Kuttel, O, Schaller, E, Schlapbach, L, Kind, H, Bonard, J M, Kern, K, App Phys Lett 76 2071 (2000)Google Scholar
60. Amaratunga, G.A.J., Baxendale, M, Rupersinghe, N, Alexandrou, I, Chhowalla, M, Butler, T, Munindradasa, A, Kiely, C J, Sakai, T, New Diamond Frontier Carbon Technol 9, 31 (1999)Google Scholar
61. Amaratunga, G A J et al. , Nature 383 321 (1996)Google Scholar
62. Satyanarayana, B S, Robertson, J, Milne, W I, J App Phys 87 3126 (2000)Google Scholar
63. Ferrari, A C, Satyanayana, B S, Robertson, J, Milne, W I, Barborini, E, Piseri, P, Milani, P, Europhys Lett 46 245 (1999)Google Scholar