Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-20T21:00:41.732Z Has data issue: false hasContentIssue false

Formation of BN and AlBN During Nitridation of Sapphire Using RF Plasma Sources

Published online by Cambridge University Press:  03 September 2012

A.J. Ptak
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
K.S. Ziemer
Affiliation:
Department of Chemical EngineeringWest Virginia University, Morgantown, WV 26506
L.J. Holbert
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506
C.D. Stinespring
Affiliation:
Department of Chemical EngineeringWest Virginia University, Morgantown, WV 26506
T.H. Myers
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506tmyers@wvu.edu
Get access

Abstract

Evidence is presented that nitrogen plasma sources utilizing a pyrolytic boron nitride liner may be a significant source of B contamination during growth and processing. Auger electron spectroscopy analysis performed during nitridation of sapphire indicate the resulting layers contain a significant amount of BN. The formation of Al1−xBxN would explain the observation of a lattice constant several percent smaller than AlN as measured by reflection high-energy electron diffraction. The presence of cubic inclusions in layers grown on such a surface may be related to the segregation of BN during the nitridation into its cubic phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Grandjean, N., Massies, J. and Leroux, L., Appl. Phys. Lett. 69, 2071 (1996).Google Scholar
2 Yang, Z., Li, L.K., and Wang, W.I., J. Vac. Sci. Technol. B14, 2354 (1996).Google Scholar
3 Moustakas, T.D., Molnar, R.J., Lei, T., Menon, G. and Eddy, J.C.R., Mater. Res. Symp. Proc. 242, 427 (1992).Google Scholar
4 Heinlein, C., Grepstad, J., Berge, T. and Riechert, H., Appl. Phys. Lett. 71, 341 (1997).Google Scholar
5 Ptak, A.J., Ziemer, K.S., Millecchia, M.R., Stinespring, C.D., and Myers, T.H., MRS Internet J. Nitride Semicond. Res. 4S1, G3.10 (1999).Google Scholar
6 Widmann, F., Feuillet, G., Daudin, B. and Rouviere, J.L., J. Appl. Phys. 85, 1550 (1999)Google Scholar
7 Yeadon, M., Marshall, M.T., Hamdani, F., Pekin, S., Morkoς, H., and Gibson, J.M., J. Appl. Phys. 83, 2847 (1998).Google Scholar
8 Ptak, A.J., Millecchia, M.R., Myers, T.H., Ziemer, K.S. and Stinespring, C.D., Appl. Phys. Lett. 74, 3836 (1999).Google Scholar
9 Myers, T.H., Millecchia, M.R., Ptak, A.J., Ziemer, K.S. and Stinespring, C.D., J. Vac. Sci. Technol. B17, 1654 (1999).Google Scholar
10 Moldovan, M., Hirsch, L.S., Ptak, A.J., Stinespring, C.D., Myers, T.H. and Giles, N.C., J. Electron. Mater. 27, 756 (1998).Google Scholar
11 Polyakov, A.Y., Shin, M., Qian, W., Skowronski, M., Greve, D.W. and Wilson, R.G., J. Appl. Phys 81, 1715 (1997).Google Scholar