Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T05:36:16.335Z Has data issue: false hasContentIssue false

Grain Boundary and Surface Segregation in Boron Doped Ni3Al

Published online by Cambridge University Press:  28 February 2011

Calvin L. White
Affiliation:
Department of Metallurgical Engineering, Michigan Technological University, Houghton, MI 49931
Ashok Choudhury
Affiliation:
Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996–2200
Get access

Abstract

Grain boundary segregation, and its effects on strength and ductility, play an especially important role in the performance of intermetallic alloys based on Ni3Al. The effect of a given segregant on grain boundary strength appears to be determined to some extent by its tendency to segregate to free surfaces. In this paper, we briefly review the available information on grain boundary and surface segregation in boron doped Ni3Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Westbrook, J. H., Trans. TMS-AIME, 209, 898 (1959).Google Scholar
2. Pope, D. P. and Vitek, V., in High Temperature Ordered Intermetallic Alloys, (MRS Symp. Proc. Vol. 59, edited by Koch, C. C. et al., 1985) pp. 183192.Google Scholar
3. Seybolt, A. U. and Westbrook, J. H., Acta Metall., 12, 449 (1964).CrossRefGoogle Scholar
4. Westbrook, J. H. and Wood, D. L., J. Inst. Metals, 91, 174 (1962-1963).Google Scholar
5. White, C. L. and Stein, D. F., Metall. Trans. A, 9A, 13 (1978).Google Scholar
6. Liu, C. T., White, C. L., and Horton, J. A., Acta Metall., 33, 213 (1985).CrossRefGoogle Scholar
7. Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., Proc. Symp. High Temperature Materials Chemistry II, ed. Munir et al., The Electrochemical Society, Inc. (1983).Google Scholar
8. Aoki, K. and Izumi, O., Nippon Kinzaku Gakkaishi, 43, 1190 (1979).Google Scholar
9. White, C. L., Padgett, R. A., Liu, C. T., and Yalisov, S. M., Scripta Metall., 18, 1417 (1985).CrossRefGoogle Scholar
10. Rice, J. R., in Effect of Hydrogen on Behavior of Materials, edited by Thompson, A. W. and Bernstein, I. M. (AIME New York, 1976), pp. 455466.Google Scholar
11. Hirth, J. P., Phil. Trans. R. Soc. Lond. A, 295, 139 (1980).Google Scholar
12. Hirth, J. P. and Rice, J. R., Metall. Trans. A, 11A, 1501 (1980).Google Scholar
13. McLean, D., in Grain Boundaries in Metals, (Oxford, Clarendon Press, 1957), pp. 116150.Google Scholar
14. White, C. L. and Coghlan, W. A., Metall. Trans. A, 8A, 1403 (1977).Google Scholar
15. White, C. L., J. Vac. Sci. Technol. A, 4, 1633 (1986).Google Scholar
16. Choudhury, A., White, C. L., and Brooks, C. R., Scripta Metall., 20, 1061 (1986).Google Scholar
17. Choudhury, A. et al., unpublished research, Oak Ridge National Laboratory (1986).Google Scholar
18. Wiedersich, H. and Okamoto, P. R. in Interfacial Segregation, edited by Johnson, W. C. and Blakely, J. M., ASM (1979) pp. 405432.Google Scholar
19. White, C. L., Liu, C. T., and Padgett, R. A., unpublished research, Oak Ridge National Laboratory (1986).Google Scholar
20. DasGupta, A. and Liu, C. T., Private communication, Oak Ridge National Laboratory (1986).Google Scholar
21. Takasugi, T. and Izumi, O., Acta Metall., 31, 1187 (1983).Google Scholar
22. Foiles, S. M., “Calculation of the Defect and Interface Properties of Ni3 Al”, paper in this symposium.Google Scholar
23. Sieloff, D. D., Brenner, S. S., and Burke, M. G., “l;Atom Probe Studies of B-Doped and Alloyed Ni3 Al” paper in this symposium.Google Scholar