Skip to main content Accessibility help

Highly crystalline graphene formation from graphene oxides by ultrahigh temperature process using solar furnace

  • Yoshihiro Kobayashi (a1), Takashi Ishida (a1), Yuichiro Miyata (a1) and Yoshihiko Shinoda (a2)


This work reports the efficient structural restoration of defective graphene oxide (GO) to a crystalline graphene by an ultrahigh temperature process at around 1800 °C achieved by a solar furnace. The GO samples were treated at high temperature by irradiating concentrated sunlight and focusing it on the sample under an inert nitrogen environment at atmospheric and reduced pressure. The structural restoration of GO was analyzed by Raman spectra, and the features of their D- and 2D-bands were remarkably improved at ultrahigh temperatures. The restoration was induced not by a photochemical reaction but dominantly by a thermally stimulated reaction. The process under reduced pressure gives rise to significantly better features in the Raman spectra than that of the atmospheric condition. This tendency shows that a trace amount of impurities contained in pure nitrogen gas are not negligible and attack the GO surfaces to induce considerable defects. These results indicate the superiority of the ultrahigh temperature process at reduced pressure for efficient GO restoration and the formation of highly crystalline graphene.



Hide All
[1] Park, S. and Ruoff, R. S., Nature Nanotechnology 4, 217 (2009).
[2] Eda, G. and Chhowalla, M., Adv. Mater. 22, 2392 (2010).
[3] Pei, S. and Cheng, M.-M., Carbon 50, 3210 (2012).
[4] Akhavan, O., Carbon 48, 509 (2010).
[5] Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., and Chen, Y., ACS Nano 2, 463 (2008).
[6] Dong, X., Su, C.-Y., Zhang, W., Zhao, J., Ling, Q., Huang, W., Chen, P., and Li, L.-J., Phys. Chem. Chem. Phys. 12, 2164 (2010).
[7] Mattevi, C. et al. , Adv. Funct. Mater. 19, 2577 (2009).
[8] Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Tang, X., Tsai, C.-H., and Li, L.-J., Chem. Mater. 21, 5674 (2009).
[9] Wang, X., Zhi, L., and Müllen, K., Nano Lett. 8, 323 (2008).
[10] Dai, B., Fu, L., Liao, L., Liu, N., Yan, K., Chen, Y., and Liu, Z., Nano Res. 4, 434 (2011).
[11] Liang, Y., Frisch, J., Zhi, L., Norouzi-Arasi, H., Feng, X., Rabe, J. P., Koch, N., and Müllen, K., Nanotechnology 20, 434007 (2009).
[12] López, V., Sundaram, R. S., Gómez-Navarro, C., Olea, D., Burghard, M., Gómez-Herrero, J., Zamora, F., and Kern, K., Adv. Mater. 21, 4683 (2009).
[13] Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Liu, A., Tang, X., Tsai, C.-H., Huang, Y., and Li, L.-J., ACS Nano 4, 5285 (2010).
[14] Negishi, R. and Kobayshi, Y., Appl. Phys. Lett. 105, 253502 (2014).
[15] Long, D., Li, W., Qiao, W., Miyawaki, J., Yoon, S.-H., Mochidab, I., and Ling, L., Nanoscale 3, 3652 (2011).
[16] Ghosh, T., Biswas, C., Oh, J., Arabale, G., Hwang, T., Luong, N. D., Jin, M., Lee, Y. H., and Nam, J.-D., Chem. Mater. 24, 594 (2012).
[17] Rozada, R., Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., and Tascón, J. M. D., Nano Res. 6, 216 (2013).
[18] Song, L., Khoerunnisa, F., Gao, W., Dou, W., Hayashi, T., Kaneko, K., Endo, M., and Ajayan, P. M., Carbon 52, 608 (2013).
[19] Murray, J. P., Steinfeld, A., and Fletcher, E. A., Energy 20, 695 (1995).
[20] Cançado, L. G. et al. , Nano Lett. 11, 3190 (2011).
[21] Lucchese, M. M., Stavale, F., Ferreira, E. H. M., Vilani, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., and Jorio, A., Carbon 48, 1592 (2010).
[22] Oberlin, A., Carbon 22, 521 (1984).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed