Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T04:19:36.105Z Has data issue: false hasContentIssue false

Hybrid composite materials containing magnetic iron oxide nanoparticles

Published online by Cambridge University Press:  01 February 2011

Corinne Chanéac
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
Elisabeth Tronc
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
Jean-Pierre Jolivet
Affiliation:
Laboratoire de Chimie de la Matière Condensée, UMR-CNRS 7574, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

Hybrid magnetic composites made up of calibrated maghemite nanoparticles well dispersed in an epoxide resin were obtained by polymerization of the resin inside stable organosols of maghemite. The sol stability was ensured by ligand adsorption onto the particle surface. Studies of phenylphosphonic acid adsorption are presented. They show a strong interaction between PPA ions and hydroxyl groups of particle surface and through bridging ≡Fe2O2POΦ species. Infrared and Mössbauer spectroscopies as well as quasi- elastic light scattering and transmission electron microscopy were used to characterize the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanchez, C. and Ribot, F., New J. Chem.,, 18, 1007 (1994)Google Scholar
2. Novak, B. M., Advanced Materials,, 5, 422 (1993)Google Scholar
3. Gleiter, H., Nanostruct. Mater.,, 6, 3 (1995)Google Scholar
4. Jolivet, J. P., Tronc, E. and Chanéac, C., Eur. Phys. J. AP., 10, 167 (2000)Google Scholar
5. Chanéac, C., Tronc, E. and Jolivet, J. P., J. Mater. Chem.,, 6 (12), 1905, 1996 Google Scholar
6. Weiserman, L. F. et al., U.S.P., 4, 994,429 (1988)Google Scholar
7. Jolivet, J. P. and Tronc, E., J. Colloid Interface Sci.,, 125, 688 (1988)Google Scholar
8. Vayssières, L., Chanéac, C., Tronc, E. and Jolivet, J. P., J. Colloid Interface Sci.,, 205, 205, (1998)Google Scholar
9. Haworth, A., Adv. Colloid Interface Sci.,, 32, 43 (1990)Google Scholar
10. Giles, C. H., MacEwan, T. H., Nakhwa, S. N. and Smith, D., J. Chem. Soc.,, 3973 (1960)Google Scholar
11. Muljadi, D., Posner, A. M. and Quirk, J. P., J. Soil Sci.,, 17, 213 (1966)Google Scholar
12. Parfitt, R. L., farmer, V. C. and Russel, J. D., J. Soil Sci.,, 28, 29 (1977)Google Scholar
13. Hingston, F. J., Posner, A. M. and Quirk, J. P., J. Soil Sci.,, 23, 177 (1972)Google Scholar
14. Thomas, L. C., Interpretation of the infrared spectra of organophosphorous compounds, Heyden and son, (Ltd 1974)Google Scholar
15. Parfitt, R. L., Russel, J. D. and farmer, V. C., J. Chem. Soc. Faraday I, 71, 1082 (1975)Google Scholar
16. Atkinston, R. J., Parfitt, R. L. and Smart, R. C., J. Chem. Soc. Faraday I,, 70, 1472 (1974)Google Scholar
17. Tronc, E. et al, J. Magn. Magn. Mater., (in press)Google Scholar
18. Tronc, E. and Jolivet, J. P., Hyperf. Interactions,, 28, 525 (1986)Google Scholar
19. Tejedor-Tejedor, M. I. and Anderson, M. A., Langmuir,, 6, 602 (1990)Google Scholar