Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-18T15:12:31.247Z Has data issue: false hasContentIssue false

Hydrogen Vibration in Cubic Dihydrides MH2 (M=Ti, Zr), and Localization in Cubic Laves Phases ZrM2H1/2 (M=V, Cr, Fe, Co)

Published online by Cambridge University Press:  15 February 2011

C. Elsässer
Affiliation:
Institut für Werkstoffwissenschaft, Max-Planck-Institut für Metallforschung, Seestrasse 92, D-70174 Stuttgart, Germany;
S. Schweizer
Affiliation:
Institut für Physik, Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
M. Fähnle
Affiliation:
Institut für Physik, Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
Get access

Abstract

A study of cubic dihydrides TiH2 and ZrH2 and of H in cubic Laves-phase compounds by means of ab-initio total-energy calculations in the local density-functional approximation is presented. First, for optic vibrational modes in the two dihydrides the calculated local potentials and excitation energies are compared to experimental results obtained by inelastic neutron scattering. Second, the relative stabilities of H on three types of interstitial sites in the cubic Laves-phase compounds, denoted by b, e and g, are investigated. Theoretically, a preference of g sites is found for M=V, Cr, and of e sites for M=Fe, Co. These results are discussed with respect to experimental observations and to empirical criteria for H accomodation in transition-metal compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hydrogen in Metals, edited by Alefeld, G. and Völkl, J., volumes I+II, Springer, Berlin, 1978.Google Scholar
[2] Hydrogen in Intermetallic Compounds, edited by Schlapbach, L., volumes I+II, Springer, Berlin, 1988 and 1992.Google Scholar
[3] Fukai, Y., The Metal-Hydrogen System, Springer, Berlin, 1993.Google Scholar
[4] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
[5] Ho, K.-M., Tao, H.-J. and Zhu, X.-Y., Phys. Rev. Lett. 53, 1586 (1984);Google Scholar
Tao, H.-J., Ho, K.-M. and Zhu, X.-Y., Phys. Rev. B 34, 8394 (1986).Google Scholar
[6] Elsässer, C., Ho, K. M., Chan, C. T. and Fähnle, M., Phys. Rev. B 44, 10377 (1991);Google Scholar
Elsässer, C., Ho, K. M., Chan, C. T. and Fähnle, M., J. Phys.: Condens. Matter 4, 5207 (1992).Google Scholar
[7] Kolesnikov, A. I., Natkaniec, I., Antonov, V. E., Belash, I. T., Fedotov, V. K., Krawczyk, J., Mayer, J. and Ponyatovsky, E. G., Physica B 174, 257 (1991).Google Scholar
[8] Elsässer, C., Ab-initio-Elektronentheorie für Übergangsmetall-Wasserstoff-Verbindungen, Habilitationsschrift, Universität Stuttgart, 1994 (in german).Google Scholar
[9] Louie, S. G., Ho, K.-M. and Cohen, M. L., Phys. Rev. B 19, 1774 (1979);Google Scholar
Elsässer, C., Takeuchi, N., Ho, K. M., Chan, C. T., Braun, P. and Fähnle, M., J. Phys.: Condens. Matter 2, 4371 (1990).Google Scholar
[10] Schweizer, S., Ab-initio-Berechnung der Eigenschaften von Wasserstoff in kubischen Laves-Phasen. Dissertation, Universität Stuttgart, 1995 (in german).Google Scholar
[11] Hamann, D. R., Schlüter, M. and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979);Google Scholar
Vanderbilt, D., Phys. Rev. B 32, 8412 (1985).Google Scholar
[12] Fu, C.-L. and Ho, K.-M., Phys. Rev. B 28, 5480 (1983).Google Scholar
[13] Ikeda, S. and Watanabe, N., Physica 120B, 131 (1983);Google Scholar
Ikeda, S. and Watanabe, N., J. Phys. Soc. Japan 56, 565 (1987).Google Scholar
[14] Didisheim, J., Yvon, K., Fischer, P. and Shaltiel, D., J. Less-Common Met. 73, 355 (1980);Google Scholar
Fruchart, D., Rouault, A., Shoemaker, C. and Shoemaker, D., J. Less-Common Met. 73, 363 (1980).Google Scholar
[15] Westlake, D. G., J. Less-Common Met. 91, 1 (1983).Google Scholar
[16] Ivey, D. G., Northwood, D. O., J. Mater. Sci. 18, 321 (1983).Google Scholar
[17] Jacob, I. and Shaltiel, D., J. Less-Common Met. 65, 117 (1979).Google Scholar
[18] Rudnev, I. I., Bykov, V. N. and Shcherbak, V. I., Fiz. Metal. Metalloved. 34, 856 (1972).Google Scholar