Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-21T03:14:48.784Z Has data issue: false hasContentIssue false

Ionic Polymer-Metal Composites as Smart Materials under Subzero Temperature Conditions

Published online by Cambridge University Press:  01 February 2011

Jason W. Paquette
Affiliation:
Active Materials and Processing Laboratory, Mechanical Engineering Department and Nevada Ventures Nanoscience Program, University of Nevada, Reno, NV 89557, U.S.A.
Kwang J. Kim
Affiliation:
Active Materials and Processing Laboratory, Mechanical Engineering Department and Nevada Ventures Nanoscience Program, University of Nevada, Reno, NV 89557, U.S.A.
Get access

Abstract

This paper presents a description of Ionic Polymer-Metal Composites (IPMCs) as an attractive solution for cold operation actuators. This is because of their capability for actuation with relatively low voltages (1 to 5 V), durability and capability of operating within the subzero regime T < 0 °C. The building block material of IPMCs experiences phase changes within the base polymeric material that results in an alteration of the performance of the material in terms of actuator performance. An experimental apparatus is constructed in order to have a controlled temperature environment in which to analyze the material. The overall temperature within the reservoir, the temperature on the IPMC surface electrodes, the conductivity of the membrane and the blocking force were all measured. The phase changes inherent at these low temperatures are investigated further by means of Differential Scanning Calorimeter to obtain the phase change temperatures and characteristics. The results are presented and interpreted to show that there is definite promise for these low temperature polymeric actuators to operate in practical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Osada, Y., Hasebe, M., ‘Bending of Ionic Gels in an Electric Field’, Chemical Letters, pp. 1285, 1985.10.1246/cl.1985.1285Google Scholar
2. Irie, Masahiro, ‘Reversible Bending of Gels in an Electric Field’, Macromolecules, pp. 28902892, 1986.10.1021/ma00165a040Google Scholar
3. Kurauchi, Toshio, Shiga, T., Hirose, H., Okada, A., ‘Deformation Behavior of Polymer Gels in Electric Field’, Japanese Polymer Reprints, 36, 2894, 1987.Google Scholar
4. Shahinpoor, M., ‘Microelectro-Mechanics of Ionic Polymeric Gels as Artificial Muscles for Robotic Applications’, Smart Material and Structures Int. J., Vol. 3, pp. 367372, 1994.10.1088/0964-1726/3/3/012Google Scholar
5. Osada, Y., ‘Electro-Stimulated Chemomechanical System Using Polymer Gels (An Approach to Intelligent Artificial Muscle System)’, Proceeding of the International Conference on Intelligent Materials, pp 155161, 1992.Google Scholar
6. Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M., Takenaka, H., ‘Bending of Polyelectrolyte Membrane-Platinum Composites by Electric Stimuli, I. Response Characteristics to Various Waveforms’, Polymer Journal, Vol. 27, No. 4, pp 436440, 1995.10.1295/polymj.27.436Google Scholar
7. Hamlen, R. P., Kent, C. E., Shafer, S. N., ‘Electrolytically Activated Contractile Polymer’, Nature, Vol. 206, pp. 11491150, 1965.10.1038/2061149b0Google Scholar
8. Bar-Cohen, Y., Shahinpoor, M., Harrison, J. O., Smith, J., ‘Flexible Low-Mass Devices and Mechanisms Actuated by EAPs’, SPIE Proc. 1999a, pp 5156.10.1117/12.349697Google Scholar
9. Bar-Cohen, Y., Leary, S., Yavrouian, A., Oguro, K., Tadokoro, S., Harrison, J., Smith, J., Su, J., ‘Challenges to the Application of IPMC as Actuators of Planetary Mechanisms’, SPIE Proc. 2000, pp 140146.10.1117/12.387772Google Scholar
10. Bar-Cohen, Y., Leary, S., Shahinpoor, M., Harrison, O. J., Smith, J., ‘Electro-Active Polymer (EAP) Actuators for Planetary Applications’, SPIE Proc. 1999b, pp 5763.10.1117/12.349708Google Scholar
11. Sadeghipour, K., Salomon, R., Neogi, S., ‘Development of a Novel Electrochemically Active Membrane and Smart Material Based Vibration Sensor/Damper’, Smart Materials and Structures, 1(2), 1992, pp 172179.10.1088/0964-1726/1/2/012Google Scholar
12. Oguro, K., Asaka, K., Takenaka, H., ‘Actuator Element’, U.S. Patent #5,268,082, 1993.Google Scholar
13. Mojarrad, Mehran, Shahinpoor, Mohsen, ‘Ion-Exchange-Metal Composite Artificial Muscle Actuator Load Characterization and Modeling’, SPIE Proc. 1997, pp 294301.10.1117/12.267127Google Scholar
14. De Rossi, D., Mazzoldi, A., ‘Linear Fully Dry Polymer Actuators’, SPIE Proc. 1999, pp 3543.10.1117/12.349710Google Scholar
15. Osada, Y., Gong, J. P., ‘Intelligent Gels -Their Dynamism and Function-’, SPIE Proc. 1999, pp 1218.10.1117/12.349677Google Scholar
16. Shahinpoor, Mohsen, ‘Electro-mechanics of Iono-elastic Beams as Electrically Controllable Artificial Muscles’, SPIE Proc. 1999, pp 109120.10.1117/12.349669Google Scholar
17. De Gennes, P. G., Okumura, K., Shahinpoor, M., Kim, K. J., ‘Mechanoelectric Effects in Ionic Gels, Europhysics Letters’, 50(4), 2000, pp 513518.Google Scholar
18. Mallavarapu, K., Newbury, K., Leo, D., ‘Feedback Control of the Bending Response of Ionic Polymer-Metal Composite Actuators’, SPIE Proc. 2001, pp 301310.10.1117/12.432660Google Scholar
19. Nemat-Nasser, Sia, ‘Micromechanics of Actuation of Ionic Polymer-metal Composites’, Journal of Applied Physics, Vol. 92, Number 5, September 2002.10.1063/1.1495888Google Scholar
20. Tadokoro, S., Takamori, T., Oguro, K., ‘Modeling IPMC for Design of Actuation Mechanisms’, in Electroactive Polymer (EAP) Actuators as Artificial Muscles, Reality, Potential, and Challenges, ed. Bar-Cohen, Y., SPIE Press, Washington, U.S.A., 2001.Google Scholar
21. Newbury, K. M., Leo, D. J., ‘Mechanical Work and Electromechanical Coupling in Ionic Polymer Bender Actuators’, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, paper number AD-23705, 2001.Google Scholar
22. Asaka, K., Fujiwara, N., Oguro, K., Onishi, K., Sewa, S., ‘State of Water and Transport Properties of Solid Polymer Electrolyte Membranes in Relation to Polymer Actuators’, SPIE Proceedings, Vol 4695, pp. 191198, 2002.10.1117/12.475164Google Scholar
23. Paquette, J.W., Kim, K. J., Nam, J.D., and Tak, Y.S.An Equivalent Circuit Model for Ionic Polymer-Metal Composites and Their Performance Improvement by a Clay-based Polymer Nano-Composite Technique,’ Journal of Intelligent Material Systems and Structures, vol. 14, Issue 10, October, 2003, pp 643656.10.1177/104538903038024Google Scholar
24. Alexandre, M., Dubois, P., ‘Polymer-layered Silicate Nanocomposites: Preparation, Properties, and Uses of a New Class of Materials,’ Materials Science and Engineering, 28, 2002, (163).Google Scholar
25. Theng, B. K. G., The Chemistry of Clay-Organic Reactions, Wiley, New York, 1974.Google Scholar
26. Nam, J.-D., Lee, J. H., Choi, H. R., Kim, H. M., Jeon, J. W., Paquette, J, Kim, K. J., Tak, Y. S., and Xu, H., ‘Development of Electroactive Silicate Nanocomposites Prepared for Use as Ionic Polymer-Metal Composites (IPMC's) Artificial Muscles and Sensors,’ Proceedings of SPIESmart Structures and Materials, San Diego, CA, paper #4965–42 (March 2002).Google Scholar
27. Hashimoto, T., Fujimura, M., Kawai, H., Structure of Sulfonated and Caboxylated Perfluorinated Ionomer Membrane, in Perfluorinated Ionomer Membranes (Eisenberg, A. and Yeager, H.), ACS Symposium Serious 180, 1982.Google Scholar
28. ‘Applications of Electroactive Polymers’, Edited by Bruno Scrosati, Chapman and Hall, 1993.Google Scholar
29. Nam, , Choi, J-D., H. R., , Tak, Y. S. and Kim, K. J., ‘Novel Electroactive, Silicate Nanocomposites Prepared to be Used as Actuators and Artificial Muscles,’ Sensors and Actuators: A. Physical, 105, 2003, (8390).10.1016/S0924-4247(03)00066-9Google Scholar
30. Kim, K. J. and Shahinpoor, M.Ionic Polymer-Metal Composites - II. Manufacturing Techniques, Smart Materials and Structures,’ 12(1), 2003, (6579).Google Scholar
31. Shahinpoor, M., Kim, K. J., and Leo, D., ‘Ionic Polymer-Metal Composites as Multifunctional Materials, Polymer Composites,’ 24(1), 2003, (2433).Google Scholar
32. Shahinpoor, M. and Kim, K. J.Solid-state Soft Actuator Exhibiting Large Electromechanical Effect, Applied Physics Letter (APL),’ 80(18), 2002, (34453447).Google Scholar
33. Shahinpoor, M. and Kim, K. J.A Novel Physically-Loaded and Interlocked Electrode Developed for Ionic Polymer-Metal Composites (IPMCs),’ Sensors and Actuators: A. Physical, 96(2/3), 2002, (125132).10.1016/S0924-4247(01)00777-4Google Scholar
34. Shahinpoor, M., Bar-Cohen, Y., Simpson, J., and Smith, J., ‘Ionic Polymer-Metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles – a Review’, Smart Materials and Structures Int. Journal, Vol. 7, pp. R15R30, 1998.10.1088/0964-1726/7/6/001Google Scholar
35. Shahinpoor, M., and Kim, K. J., ‘Ionic Polymer-Metal Composites – I. Fundamentals’, (Review Paper), Smart Materials and Structures Int. Journal, Vol. 10, pp. 819833, 2001.10.1088/0964-1726/10/4/327Google Scholar
36. Kim, K. J., and Shahinpoor, M., ‘Ionic Polymer-Metal Composites – II. Manufacturing Techniques’, Smart Materials and Structures (SMS), Institute of Physics Publication, Vol. 12, No. 1, pp. 6579, 2003.10.1088/0964-1726/12/1/308Google Scholar
37. Yoshida, H. and Miura, Y., J. Membrane Science, 68, pp. 19 (1992).10.1016/0376-7388(92)80145-AGoogle Scholar
38. Paquette, J. and Kim, K. J., “Behavior of Ionic Polymer-Metal Composites under Subzero Temperature Conditions,” Proceedings of IMECE '03, Paper #IMECE2003–42929, Washington D. C., (November 2003).Google Scholar