Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-07T23:25:35.716Z Has data issue: false hasContentIssue false

Metal Organic Deposition of REBa2Cu3O7-y Films from Metal Trifluoroacetate Precursors

Published online by Cambridge University Press:  18 March 2011

Tetsuji Honjo
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Hiroshi Fuji
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Daxiang Huang
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Yuichi Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Teruo Izumi
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Yuh Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062, JAPAN
Get access

Abstract

Metal organic deposition (MOD) process using metal trifluoroacetate (TFA) precursors was applied to the Nd1+XBa2−XCu3Oy (Nd123) and the Tc dependence on experimental conditions such as the oxygen partial pressure (PO2) and the substrate temperature (Ts) for annealing was investigated. Thin films grown on SrTiO3 substrates at Ts = 800°C under PO2 = 300 ppm showed a Tc value of 89 K. However, from the results of TEM-EDS measurements, the substitution values of x in the Nd123 films increased from the substrate toward the surface in the film. These experimental results could be thermodynamically explained by the following model. The basic idea of the model is that the Ba potential in the precursor decreases by coarsening of BaF2 particles during the annealing for the Nd123 crystal growth. This model predicts that the small substitution value can be obtained with a higher growth rate of the Nd123 phase under low PO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mclntyre, P. C., Cima, M. J. and Ng, M. F., J. Appl. Phys., 68, 4183 (1990)Google Scholar
2. Malozemoff, A. P., Annavarapu, S., Fritzemeir, L., Li, Q., Prunier, V., Rupich, M., Thieme, C., Zhang, W., Goyal, A., Paranthaman, M. and Lee, D. F., European Conference on Applied Superconductivity, Barcelona, Spain, September 14-17, 1999, submitted for publication.Google Scholar
3. Fuji, H., Honjo, T., Nakamura, Y., Izumi, T., Araki, T., Hirabayashi, I., Shiohara, Y., Iijima, I. and Takeda, K., Proc. of the 13th International Symposium on Superconductivity, Tokyo, Japan, October 14-16, 2000, to be published.Google Scholar
4. Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T. and Tanaka, S., Jpn. J. Appl. Phys., 33, 1000 (1994)Google Scholar
5. Murakami, M., Yoo, S. I., Higuchi, T. and Sakai, N., Jpn. J. Appl. Phys., 33, 715 (1994)Google Scholar
6. Takita, K., Akinaga, H., Katoh, H., Asano, H. and Masuda, K., Jpn. J. Appl.Phys., 27, 67 (1988)Google Scholar
7. Cantoni, C., Norton, D.P., Christen, D.K., Goyal, A., Kroeger, D.M., Verebelyi, D.T. and Paranthaman, M., Physica C., 324, 177 (1999)Google Scholar
8. Naito, N., Hammond, R. H., Oh, B., Hahn, M. R., Hsu, J. W. P., Rosenthal, P., Marshall, A. F., Beasley, M. R., Geballe, T. H. and Kapitulnik, A., J. Matel. Res., 2, 713 (1987)Google Scholar
9. Yoshizumi, M., Kambara, M., Shiohara, Y. and Umeda, T., Physica C., 334, 77 (2000)Google Scholar
10. Kambara, M., Umeda, T., Tagami, M., Yao, X., Goodilin, E. A. and Shiohara, Y., J. Am. Ceram. Soc., 81, 2116 (1998)Google Scholar
11. Smith, J. A., Cima, M. J. and Sonnenberg, N., IEEE Trans. Appl. Supercond., 9, 1531 (1999)Google Scholar