Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-14T08:22:30.333Z Has data issue: false hasContentIssue false

Nitride-Based Thin-Film Cold Cathode Emitters

Published online by Cambridge University Press:  10 February 2011

James A Christman
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Andrew T Sowers
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Michael D Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Brandon L Ward
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Robert F Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695
Robert J Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Cold cathodes have been fabricated using two different nitride structures as a thin film emitting layer. The A1N and graded AlGaN structures are prepared by metalorganic chemical vapor deposition (MOCVD) on an n-type 6H-SiC substrate. Individual aluminum grids are perforated with an array of either 1, 3, or 5μm holes through which the emitting surface is exposed. After device fabrication, a hydrogen plasma exposure was found to be necessary to activate the cathode. The devices have displayed a limited lifetime and a small percentage of the devices operate, although half of the devices with 5μm holes functioned. The highest measured collector currents are 0.1μA for A1N and l0nA for AlGaN at grid voltages of 110V and 20V, respectively. The grid currents are typically 10 to 104 times the collector currents.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. van der Weide, J., Nemanich, R. J., Phys. Rev. B 49, 13629 (1994).Google Scholar
2. Benjamin, M. C., Wang, C., Davis, R. F., Nemanich, R. J., Appl. Phys. Lett 64, 3288 (1994).Google Scholar
3. Benjamin, M. C., Bremser, M. D., Weeks, J. T. W., King, S. W., Davis, R. F., Nemanich, R. J., to be published in Surf. Sci. Reports ICFSCI-5 Proceedings (1996).Google Scholar
4. Givargizov, E. I., J. Vac. Sci. Technol. B 13, 414417 (1995).Google Scholar
5. Liu, J., Zhirnov, V. V., Wojak, G. J., Myers, A. F., Choi, W. B., Hren, J. J., Wolter, S. D., McClure, M. T., Stoner, B. R., Glass, J. T., Appl. Phys. Lett. 65, 28422844 (1994).Google Scholar
6. Xu, N. S., Tzeng, Y., Latham, R. V., J. Phys. D: Appl. Phys. 27, 19881990 (1994).Google Scholar
7. Geis, M. W., Twichell, J. C., Appl. Phys. Lett. 67, 14 (1995).Google Scholar
8. Geis, M. W., Twichell, J. C., Efremow, N. N., Krohn, K. E., Marchi, C., Lyszczarz, T. M., Proceedings of the 8th International Vacuum Microelectronics Conference, p. 277 (1995).Google Scholar
9. Bremser, M. D., Perry, W. G., Edwards, N. V., Zheleva, T., Parikh, N., Aspnes, D. E., Davis, R. F., Mater. Res. Cos. Symp. Proc. 395, 195 (1996).Google Scholar
10. Bremser, M. D., Perry, W. G., Zheleva, T., Edwards, N. V., Nam, O. H., Parikh, N., Aspnes, D. E., Davis, R. F., MRS Internet J. Nitride Semicond. Res. 1, 8 (1996).Google Scholar
11. King, S. W., Smith, L. L., Barnak, J. P., Ku, J., Christman, J. A., Benjamin, M. C., Bremser, M. D., Nemanich, R. J., and Davis, R. F., in GaN and Related Materials edited by Ponce, F. A., Dupuis, R. D., Nakamura, S., and Edmond, J. A. (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996) pp. 739744.Google Scholar