Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-23T09:17:14.826Z Has data issue: false hasContentIssue false

Novel Linear and Hyperbranched Polythiophene Derivatives Containing Diketopyrrolopyrroles as Linking Groups

Published online by Cambridge University Press:  19 May 2015

Sheng-Hsiung Yang*
Affiliation:
Institute of Lighting and Energy Photonics, National Chiao Tung University No. 301, Gaofa 3rd Road, Guiren Dist., Tainan City 71150, Taiwan, R.O.C.
Chia-Hao Hsieh
Affiliation:
Institute of Lighting and Energy Photonics, National Chiao Tung University No. 301, Gaofa 3rd Road, Guiren Dist., Tainan City 71150, Taiwan, R.O.C.
Get access

Abstract

The goal of this research is to synthesize novel linear and hyperbranched polythiophene derivatives containing diketopyrrolopyrrole (DPP) as linking groups, and to investigate thermal, optical, electrochemical, and photovoltaic properties of those derivatives. Polymers with high regioregularity were synthesized via the Universal Grignard metathesis polymerization. Those linear or hyperbranched polythiophenes containing DPP bridging moieties showed higher molecular weights and better thermal stability compared with normal P3HT. The UV-vis absorption spectra of the DPP-containing polymers are similar to that of P3HT in film state, while they show distinct attenuation in fluorescent emission. Finally, all polymers were blended with PC61BM and used as active layers for fabrication of inverted solar devices. The devices based on those DPP-containing polythiophenes revealed the open-circuit voltage (VOC) of 0.55–0.58 V, the short-circuit current (JSC) of 8.62–16.21 mA/cm2, the fill factor (FF) of 36–41%, and the power conversion efficiency (PCE) of 1.73–3.74%.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, Y., Cook, S., Tuladhar, S. M., Choulis, S. A., Nelson, J., Durrant, J. R., Bradley, D. D. C., Giles, M., McCulloch, I., Ha, C. S., Ree, M., Nat. Mater. 5, 197203 (2006).CrossRefGoogle Scholar
Cheng, Y. J., Yang, S. H., Hsu, C. S., Chem. Rev. 109, 58685923 (2009).CrossRefGoogle Scholar
Chang, Y. T., Hsu, S. L., Chen, G. Y., Su, M. H., Singh, T. A., Diau, E. W. G., Wei, K. H., Adv. Funct. Mater. 18, 23562365 (2008).CrossRefGoogle Scholar
Chang, Y. T., Hsu, S. L., Su, M. H., Wei, K. H., Adv. Mater. 21, 20932097 (2009).CrossRefGoogle Scholar
Hou, J., Tan, Z., Yan, Y., He, Y., Yang, C., Li, Y., J. Am. Chem. Soc. 128, 49114916 (2006).CrossRefGoogle Scholar
Zhang, Q., Cirpan, A., Russell, T. P., Emrick, T., Macromolecules 42, 10791082 (2009).CrossRefGoogle Scholar
Zhou, E., Tan, Z., Yang, Y., Huo, L., Zou, Y., Yang, C., Li, Y., Macromolecules 40, 18311837 (2007).CrossRefGoogle Scholar
Tu, G., Bilge, A., Adamczyk, S., Forster, M., Heiderhoff, R., Balk, L. J., Mühlbacher, D., Morana, M., Koppe, M., Scharber, M. C., Choulis, S. A., Brabec, C. J., Scherf, U., Macromol. Rapid Commun. 28, 17811785 (2007).CrossRefGoogle Scholar
Mangold, H. S., Richter, T. V., Link, S., Würfel, U., Ludwigs, S., J Phys. Chem. B 116, 154159 (2012).CrossRefGoogle Scholar
Yang, S. H., Lin, T. S., Huang, Y. Z., Li, H. D., Chao, Y. C., Polymer 55, 60586068 (2014).CrossRefGoogle Scholar
Chen, M. Z., Chen, W. S., Jeng, S. C., Yang, S. H., Chung, Y. F., Opt. Express 21, 2927729282 (2013).CrossRefGoogle Scholar
Lee, J. U., Jung, J. W., Emrick, T., Russell, T. P., Jo, W. H., J. Mater. Chem. 20, 32873294 (2010).CrossRefGoogle Scholar
Li, G., Shrotriya, V., Yao, Y., Huang, J., Yang, Y., J. Mater. Chem. 17, 31263140 (2007).CrossRefGoogle Scholar
Brown, P. J., Thomas, D. S., Köhler, A., Wilson, J. S., Kim, J. S., Ramsdale, C. M., Sirringhaus, H., Friend, R. H., Phys. Rev. B 67, 064203 (2003).CrossRefGoogle Scholar
Noriega, R., Rivnay, J., Vandewal, K., Koch, F. P. V., Stingelin, N., Smith, P., Toney, M. F., Salleo, A., Nat. Mater. 12, 10381044 (2013).CrossRefGoogle Scholar
Ho, P. Y., Thiyagu, S., Kao, S. H., Kao, C. Y., Lin, C. F., Nanoscale 6, 466471 (2014).CrossRefGoogle Scholar
Tan, Z., Li, L. J., Cui, C. H., Ding, Y. Q., Xu, Q., Li, S. S., Qian, D. P., Li, Y. F., J. Phys. Chem. C 116, 1862618632 (2012).CrossRefGoogle Scholar
Lampande, R., Kim, G. W., Boizot, J., Kim, Y. J., Pode, R., Kwon, J. H., J. Mater. Chem. A 1, 68956900 (2013).CrossRefGoogle Scholar