Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-25T10:34:33.675Z Has data issue: false hasContentIssue false

Photo-oxidation of Multiwalled Carbon Nanotubes

Published online by Cambridge University Press:  26 February 2011

B. Parekh
Affiliation:
bhavinparekh_90@hotmail.com, RIT, Center for Materials Science and Engineering, United States
Thomas Debies
Affiliation:
Thomas.Debies@xeroxlabs.com, Xerox, United States
Pam Knight
Affiliation:
ptk5@case.edu, RIT, Chemistry, United States
K. S. V. Santhanam
Affiliation:
ksssch@rit.edu, RIT, Center for Materials Science and Engineering, United States
Gerald A. Takacs
Affiliation:
GATSCH@RIT.EDU, RIT, Chemistry and Center for Materials Science and Engineering, United States
Get access

Abstract

MWNTs were photo-oxidized in quartz boats using low-pressure Hg lamps and emission downstream from Ar microwave plasmas which are primarily atomic line sources of 253.7 and 184.9 nm UV, and 106.7 and 104.8 nm vacuum UV (VUV) radiation, respectively. X-ray photoelectron spectroscopy (XPS) showed rapid oxidation during the first hour of UV treatment and then an increase that was directly proportional to the time of treatment up to 4 h where the oxygen concentration was 7.5 at%. VUV photo-oxidation resulted in an oxygen concentration up to 9.5 at% with exposure time for the initial 2 h of treatment. Beyond 2 h, the oxygen concentration decreased with VUV exposure due to a larger rate of de-oxidation than oxidation at the surface. Curve fitting of the XPS C1s spectra revealed mainly the C-O-C functional group with the presence of C=O, O-C=O and O=C-O-C=O moieties. SEM micrographs showed no apparent effect on the structure or appearance of the MWNTs as expected for surface modification.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, R. J., Franklin, N. R., Kong, J., Cao, J., Tombler, T. W., Zhang, Y. and Dai, H., Appl. Phys. Lett. 79, 2258 (2001).Google Scholar
2. Savage, T., Bhattacharya, S., Sadanadan, B., Gaillard, J., Tritt, T. M., Sun, Y-P., Wu, Y., Nayak, S., Car, R., Marzari, N., Ajayan, P. M. and Rao, A. M., J. Phys.: Condens. Matter 15, 5915 (2003).Google Scholar
3. Grujicic, M., Cao, G., Rao, A. M., Tritt, T. M. and Nayak, S., Appl. Surf. Sci. 214, 289 (2003).Google Scholar
4. Cai, L., Bahr, J. L., Yao, Y. and Tour, J. M., Chem. Mater. 14, 4235 (2002).Google Scholar
5. Sener, U., Entenberg, A., Kahn, B., Egitto, F. D., Matienzo, L. J., Debies, T. and Takacs, G. A., in: Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Mittal, K. L. (Ed.), Vol. 3, 535552, VSP, Utrecht (2005).Google Scholar
6. Dasilva, W., Entenberg, A., Kahn, B., Debies, T. and Takacs, G. A., J. Adhesion Sci. Technol. 18, 14651481 (2004).Google Scholar
7. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J. B., Koos, A. A., Osvath, Z., Kocsonya, A., Biro, L. P. and Kiricsi, I., Chem. Phys. Lett. 360, 429 (2002).Google Scholar
8. Xing, Y., Liang, L., Chusuei, C. C. and Hull, R. V., Langmuir 21, 4185 (2005).Google Scholar
9. Finlayson-Pitts, B. J. and Pitts, J. N., Atmospheric Chemistry, p. 459, Wiley & Sons, New York (1986).Google Scholar
10. Finlayson-Pitts, B. J. and Pitts, J. N., Chemistry of the Upper and Lower Atmosphere, Academic Press, New York (2000).Google Scholar
11. Dag, S., Gulseren, O., Yildirim, T. and Ciraci, S., Phys. Rev. B 67, 165424 (2003).Google Scholar
12.(a) Banerjee, S. and Wong, S. S., J. Phys. Chem. B 106, 12144 (2002).Google Scholar
(b) Lu, X., Zhang, L., Xu, X., Wang, N. and Zhang, Q., J. Phys. Chem. B 106, 2136 (2002).Google Scholar
13. Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T. Jr, Liu, J. and Smalley, R. E., J. Am. Chem. Soc. 122, 2383 (2000).Google Scholar
14. Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T. Jr, Liu, J. and Smalley, R. E., Chem. Phys. Lett. 324, 213 (2000).Google Scholar
15. Lim, S. C., Jung, H. J., Bae, D. J., Suh, E. K., Shin, Y. M., An, K. H., Lee, Y. H. and Choi, J., Proc. Sixth Appl. Diamomd Conf./Second Frontier Carbon Technol. Joint Conf. (ADC/FCT 2001), Tzeng, Y., Miyoshi, K., Yoshikawa, M., Murakawa, M, Koga, Y., Kobashi, K. and Amaratunga, G. A. J. (Eds.), 759 (2001).Google Scholar
16. Cottrell, T. L., The Strengths of Chemical Bonds, 2nd ed., Butterworths, Washington, DC (1958).Google Scholar
17. Taylor, R., Parsons, J. P., Avent, A. G., Rannard, S. P., Dennis, T. J., Hare, J. P., Kroto, H. W. and Walton, D. R. M., Nature 351, 277 (1991).Google Scholar
18. Haufler, R. E., Wang, L-S., Chibante, L. P. F., Jin, C., Conceicao, J., Chai, Y. and Smalley, R. E., Chem. Phys. Lett. 179, 449 (1991).Google Scholar
19. Kroll, G. H., Benning, P. J., Chen, Y., Ohno, T. R., Weaver, J. H., Chibante, L. P. F. and Smalley, R. E., Chem. Phys. Lett. 181, 112 (1991).Google Scholar