Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-14T08:42:58.182Z Has data issue: false hasContentIssue false

RTA Processing of W-Polycide Dual-Gate Sub-Micron Structures for Low-Voltage CMOS Technology

Published online by Cambridge University Press:  10 February 2011

J. Bevk
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
M. Furtsch
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
G. E. Georgiou
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
S. J. Hillenius
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
D. Schielein
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
T. Schiml
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
P. J. Silverman
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
H. S. Luftman
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Get access

Abstract

Deep submicron CMOS technology for low-power, low-voltage applications requires the use of symmetric n+/p+ poly gate structures. This requirement introduces a number of processing challenges, involving fundamental issues of atomic diffusion over distances of 1Å to ∼30μm. Two of the critical issues are dopant cross-diffusion between P- and NMOS devices with connected gates, resulting in large threshold voltage shifts, and boron penetration through the gate oxide. We show that in devices with W-polycide dual-gat:e structure most of these problems can be alleviated by using rapid thermal annealing, RTA, in combination with a few additional, simple processing steps (e. g., low-temperature recrystallization of a-Si layer and selective nitrogen coimplants). The RTA step, in particular, ensures thai: the boron activation in the p+ poly-Si remains high and negates any effects of arsenic cross-diffusion. CMOS devices with properly processed gates have low gate stack profiles, small threshold voltage shifts (<30mV), and excellent device characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bevk, J., Georgiou, G. E., Frei, M., Silverman, P. J., Lloyd, E. J., Kim, Y., Luftman, H. S., Furtsch, M., Schiml, T., and Hillenius, S. J., 1995 IEDM Tech. Dig., pp. 893896 and refs. therein.Google Scholar
2. Hayashida, H., Toyoshima, Y., Suizu, Y., Mitsuhashi, K., Iwai, H., and Maeguchi, K., Symp. on VLSI Tech., pp. 2930, 1989.Google Scholar
3. Bevk, J. et al. , to be published.Google Scholar
4. Schiml, T., Bevk, J., Furtsch, M., Georgiou, G. E., Cirelli, R., Mansfield, W. M., Silverman, P. J., and Luftman, H. S., these Proceedings.Google Scholar
5. Krisch, K. S., Bude, J., and Manchanda, L., Proceedings of the Symposium on Diagnostic Techniques for Semiconductor Materials and Devices (Electrochemical Society, 1994), pp. 1223.Google Scholar