Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-19T03:28:27.488Z Has data issue: false hasContentIssue false

Stress Corrosion Cracking Behavior of X60 Pipe Steel in Soil Environment

Published online by Cambridge University Press:  01 February 2011

Z. Velazquez
Affiliation:
Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Lomas de Santiaguito, C.P. 58120, Morelia, Mich., México.
E. Guzman
Affiliation:
Instituto Tecnológico de Morelia, Av. Tecnológico 1500, Lomas de Santiaguito, C.P. 58120, Morelia, Mich., México.
M‥A. Espinosa-Medina
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C. P. 07730, México.
A. Contreras*
Affiliation:
Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas Norte 152, San Bartolo Atepehuacan, C. P. 07730, México.
*
Get access

Abstract

Stress corrosion cracking (SCC) susceptibility of API X60 pipeline steel in a soil solution by slow strain rate tests (SSRT), and surface fracture analysis was investigated. The SSRT were performed at strain rate of 25.4 × 10-6 mm/sec in a glass autoclave containing the soil solution called NS4 with pH of 3 and 10 at room temperature and 50°C. Both anodic and cathodic polarization potentials of 200 mV referred to Ecorr was applied. The results of ratio reduction area (RRA), time to failure ratio (TFR) and elongation plastic ratio (EPR) indicate that X60 pipeline steel was susceptible to SCC at pH 3 and cathodic polarization of -200 mV at room temperature and 50°C. Scanning electron microscopy (SEM) observations of these specimens showed a brittle type of fracture with transgranular appearance. The SCC process and mechanism of X60 steel into NS4 solution was hydrogen based mechanism. With the different applied potentials the dominance of SCC process changes. At low pH the temperature effect on SCC susceptibility is more noticeable at 20°C. However at high pH this effects changes, being the steel more susceptible to SCC at 50°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chiang, W. C., Pu, C. C., Yu, B. L., Wu, J. K., Mater. Lett. 57, 2485 (2003).Google Scholar
2. Luu, W. C., Liu, P. W., Wu, J. K., Corros. Sci. 44, 1783 (2002).Google Scholar
3. Danielson, M. J., Corros. Sci. 44, 829 (2002).Google Scholar
4. Zhang, X. Y., Lambert, S.B., Sutherby, R. and Plumtree, A., Corrosion. 55, 297 (1999).Google Scholar
5. Durairajan, A., Krishnieyer, A., Haran, B. S., White, R. E., Popov, B. N., Corrosion. 56, 283 (2000).Google Scholar
6. Kolat, V. S., Bayri, N., Atalay, S., J. Alloy. Compd. 343, 234 (2002).Google Scholar
7. Abd, H., Elhamid, B. G., Ateya, K. G., Weil, K. G., Pickering, H. W., Corrosion. 57, 428 (2001).Google Scholar
8. Wang, S. H., Luu, W. C., Ho, K. F., Wu, J. K., Mater. Chem. Phys. 77, 447 (2002).Google Scholar
9. Gonzalez-Rodriguez, J.G., Espinosa-Medina, M.A., Angeles-Chavez, C., Zeferino-Rodriguez, T., Mater. Corros. 58, 599 (2007).Google Scholar
10. He, D. X., Chen, W, Luo, J. L., Corrosion. 60, 778 (2004).Google Scholar
11. Parkins, R. N., Beavers, J. A., Corrosion. 59, 258 (2003).Google Scholar
12. Chen, W., King, F., Vokes, E., Corrosion. 58, 267 (2002).Google Scholar
13. Puiggali, M., Rousserie, S., Touzet, M., Corrosion. 58, 961 (2002).Google Scholar
14. Brongers, M. P. H., Beavers, J. A., Jaske, C. E., Delanty, B. S., Corrosion. 56, 1050 (2000).Google Scholar
15. Perdomo, J. J., Morales, J. L., Vitoria, A., Lusinchi, A. J., Mater. Perform. 41, 54 (2002).Google Scholar
16. Parkins, R.N., “Stress Corrosion Cracking” Uhlig's Corrosion Handbook, second edition, Edited by Winston Revie, R., 191 (2000).Google Scholar
17. Parkins, R.N., Corrosion, 50, 394 (1994).Google Scholar
18. Elboujdaini, M., Wang, Y.Z., Revie, R.W., International Pipeline Conference (IPC) ASME, 967972 (2000).Google Scholar
19. Leis, B.N. and Eiber, R.J., Proceedings, first International Business Conference on Onshore Pipelines, Berlin, December (1997).Google Scholar
20. Beavers, J. A., Harle, B. A., Journal of Offshore Mechanics and Artic Eng. 123, 147 (2001).Google Scholar
21. Pan, B.W., Peng, X., Chu, W.Y., Su, Y.J., Qiao, L.J., Materials Science Eng. A, 434 76 (2006).Google Scholar
22. Bulger, J. and Luo, J.Effect of microstructure on near-neutral pH SCCInternational Pipeline Conference (IPC) ASME 2000, 947952, (2000).Google Scholar
23. NACE TM-0198 Slow Strain Rate Test Method for Screening Corrosion-Resistant Alloys (CRAs) for Stress Corrosion Cracking in Sour Oilfield Service, 1–21, (2004).Google Scholar
24. ASTM G-129, Slow strain rate testing to evaluate the susceptibility of metallic materials to environmentally assisted cracking, 1–7, (2006).Google Scholar
25. Espinosa-Medina, M. A., Sosa, E., Ángeles-Chávez, C., Contreras, A. Corrosion Engineering Science and Technology. (2009). In press.Google Scholar
26. Kane, R. D., Joia, C.J.B.M., Small, A.L.L.T. and Ponciano, J.A.C., Materials Performance, 36, 71 (1997).Google Scholar
27. Rhodes, P. R., Corrosion, 57, 923 (2001).Google Scholar