Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-18T19:59:51.745Z Has data issue: false hasContentIssue false

Structural Properties of Iron Nitride on Cu(100): an Ab-initio Molecular Dynamics study

Published online by Cambridge University Press:  14 January 2011

Dodi Heryadi
Affiliation:
Supercomputing Laboratory, King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia
Udo Schwingenschlögl
Affiliation:
Physical Science & Engineering, King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia
Get access

Abstract

Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67μB.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Borsa, D. M., Grachev, S., Boerma, D.O., and Kerssemakers, J. W. K., Appl. Phys. Lett. 79, 994 (2001).Google Scholar
2. Costa-Kramer, J. L., Borsa, D. M., Garcia-Martin, J. M., Martin-Gonzalez, M. G., Boerma, D. O., and Briones, F., Phys. Rev. B 69, 144402 (2004).Google Scholar
3. Gallego, J. M., Grachev, S. Y., Passeggi, M. C. G. Jr., Sacharowitz, F., Wcija, D., Miranda, R., and Boerma, D.O., Phys. Rev. B. 69, 121404(R) (2004).Google Scholar
4. Gallego, J. M., Grachev, S. Y., Borsa, D. M., Boerma, D. O., Ecija, D., and Miranda, R., Phys. Rev. B. 70, 115417 (2004).Google Scholar
5. Gallego, J. M., Boerma, D. O., Miranda, R., and Yndurain, F., Phys. Rev. Lett. 95, 136102 (2005).Google Scholar
6. Takagi, Y., Isami, K., Yamamoto, I., Nakagawa, T., and Yokoyama, T., Phys. Rev. B 81, 035422 (2010).Google Scholar
7. Coey, J. M. D. and Smith, P. A. I., J. Magn. Magn. Matter. 200, 405 (1999).Google Scholar
8. van Voorthuysen, E. H. Du Marchie, Boerma, D.O., and Chechenin, N.C., Metall. Mater. Trans. A 33, 2593 (2002).Google Scholar
9. Kresse, G. and Hafner, J., Phys. Rev. B 48, 13115 (1993).Google Scholar
10. Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).Google Scholar
11. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
12. Blochl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
13. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
14. Marsman, M. and Kresse, G., J. Chem. Phys. 125, 104101 (2006).Google Scholar
15. Jacobs, H., Rechenbach, D. R., and Zachwieja, U., J. Alloys Compounds 227, 10 (1995)Google Scholar