Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-02T06:04:34.241Z Has data issue: false hasContentIssue false

Surface Activity of Magnesium During GaN Molecular Beam Epitaxial Growth

Published online by Cambridge University Press:  03 September 2012

V. Ramachandran
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
J. E. Northrup
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
D. W. Greve
Affiliation:
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Get access

Abstract

Exposure of wurtzite GaN films grown on Si-polar 6H-SiC(0001) to magnesium during molecular beam epitaxy (MBE) has been studied. In the nitrogen rich regime of MBE growth, GaN films are known to grow with rough morphology. We observe on GaN(0001) that small doses of Mg act as a surfactant, smoothing out this roughness. An interpretation of this surfactant behavior is given in terms of electron counting arguments for the surface reconstructions. Previously, we have reported that larger doses of Mg lead to inversion of the Ga-polar GaN film to produce N-polar GaN. Several Mg-related reconstructions of the resulting GaN(000 ) surface are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Beaumont, B., Haffouz, S. and Gibart, P., Appl. Phys. Lett. 72, 921 (1998).Google Scholar
[2] Zhao, Y., Deng, F., Lau, S. S., and Tu, C. W., J. Vac. Sci. Technol. 16, 1297 (1998).Google Scholar
[3] Widmann, F., Daudin, B., Feuillet, G., Pelekanos, N., and Rouvière, J. L., Appl. Phys. Lett. 73, 2642 (1998).Google Scholar
[4] Tarsa, E. J., Heying, B., Wu, X. H., Fini, P., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 82, 5472 (1997).Google Scholar
[5] Smith, A. R., Ramachandran, V., Feenstra, R. M., Greve, D. W., Ptak, A., Myers, T. H., Sarney, W. L., Salamanca-Riba, L., Shin, M.-S. and Skowronski, M., MRS Internet J. Nitride Semicond. Res. 3, 12(1998).Google Scholar
[6] Ramachandran, V., Brady, M. F., Smith, A. R., Feenstra, R. M. and Greve, D. W., J. Electron. Mater. 27, 308 (1998).Google Scholar
[7] Ramachandran, V., Smith, A. R., Feenstra, R. M. and Greve, D. W., J. Vac. Sci. Technol. A 17, 1289 (1999).Google Scholar
[8] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M. S., Skowronski, M., Neugebauer, J., Northrup, J. E., J. Vac. Sci. Technol. B 16, 2242 (1998).Google Scholar
[9] Cheng, T. S., Foxon, C. T., Jeffs, N. J., Dewsnip, D. J., Flannery, L., Orton, J. W., Novikov, S. V., Ber, B. Ya and Kudriavtsev, Yu A., MRS Internet J. Nitride Semicon. Res. 2, 13 (1997).Google Scholar
[10] Ramachandran, V., Feenstra, R. M., Sarney, W. L., Salamanca-Riba, L., Northrup, J. E., Romano, L. T., and Greve, D. W., Appl. Phys. Lett. 75, 808 (1999).Google Scholar
[11] Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., and Northrup, J., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar
[12] Bungaro, C., Rapcewicz, K., and Bernholc, J., Phys. Rev. B 59, 9771 (1999).Google Scholar
[13] Zywietz, T., Neugebauer, J., and Scheffler, M., Appl. Phys. Lett. 73, 487 (1998).Google Scholar
[14] Ramachandran, V., Lee, C. D., Feenstra, R. M., Smith, A. R., Northrup, J. E., and Greve, D. W., J. Cryst. Growth 126, to appear.Google Scholar
[15] Iwata, K., Asahi, H., Yu, S. J., Asami, K., Fujita, H., Fushida, M., and Gonda, S., Jpn. J. Appl. Phys. 35, L289 (1996).Google Scholar
[16] Xue, Q. K., Xue, Q. Z., Bakhtizin, R. Z., Hasegawa, Y., Tsong, I. S. T., Sakurai, T., and Ohno, T., Phys. Rev. Lett. 82, 3074 (1999).Google Scholar