Skip to main content
×
Home

Thermal and elastic properties of Ge-Sb-Te based phase-change materials

  • P. Zalden (a1) (a2), C. Bichara (a3), J. v. Eijk (a1) (a2), R. P. Hermann (a4) (a5), I. Sergueev (a1), G. Bruns (a1) (a2), S. Buller (a6), W. Bensch (a6), T. Matsunaga (a7) (a8), N. Yamada (a8) (a9) and M. Wuttig (a1) (a2)...
Abstract
ABSTRACT

Phase-change materials undergo a change in bonding mechanism upon crystallization, which leads to pronounced modifications of the optical properties and is accompanied by an increase in average bond lengths as seen by extended x-ray absorption fine structure (EXAFS), neutron and x-ray diffraction. The reversible transition between a crystalline and an amorphous phase and its related property contrast are already employed in non-volatile data storage devices, such as rewritable optical discs and electronic memories. The crystalline phase of the prototypical material GeSb2Te4 is characterized by resonant bonding and pronounced disorder, which help to understand their optical and electrical properties, respectively. A change in bonding, however, should also affect the thermal properties, which will be addressed in this study. Based on EXAFS data analyses it will be shown that the thermal and static atomic displacements are larger in the meta-stable crystalline state. This indicates that the bonds become softer in the crystalline phase. At the same time, the bulk modulus increases upon crystallization. These observations are confirmed by the measured densities of phonon states (DPS), which reveal a vibrational softening of the optical modes upon crystallization. This demonstrates that the change of bonding upon crystallization in phase-change materials also has a profound impact on the lattice dynamics and the resulting thermal properties.

Copyright
References
Hide All
[1]Ovshinsky S.R., “Reversible Electrical Switching Phenomena in Disordered Structures,” Physical Review Letters, vol. 21, 1968, p. 1450.
[2]Yamada N., Ohno E., Nishiuchi K., Akahira N., and Takao M., “Rapid-phase transitions of GeTe-Sb, Te, pseudobinary for an optical disk memory,” Journal of Applied Physics, vol. 69, 1991, pp. 28492856.
[3]Wuttig M. and Yamada N., “Phase-change materials for rewriteable data storage,” Nature materials, vol. 6, 2007, pp. 824832.
[4]Lencer D., Salinga M., and Wuttig M., “Design Rules for Phase-Change Materials in Data Storage Applications,” Advanced Materials, vol. 23, May 2010, pp. 20302058.
[5]Wełnic W., Pamungkas A., Detemple R., Steimer C., Blügel S., and Wuttig M., “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nature Materials, vol. 5, Dec. 2005, pp. 5662.
[6]Kolobov A., “Understanding the phase-change mechanism of rewritable optical media,” Nature Materials, vol. 3, 2004, pp. 703708.
[7]Zallen R., The Physics of Amorphous Solids, Wiley, 1983.
[8]Jóvári P., Kaban I., Steiner J., Beuneu B., Schöps A., and Webb M., “Local order in amorphous Ge2Sb2Te5 and GeSb2Te4,” Physical Review B, vol. 77, 2008, p. 035202.
[9]Baker D., Paesler M., Lucovsky G., Agarwal S., and Taylor P., “Application of Bond Constraint Theory to the Switchable Optical Memory Material Ge2Sb2Te5,” Physical Review Letters, vol. 96, 2006, pp. 57.
[10]Matsunaga T. and Yamada N., “Structural investigation of GeSb2Te4: A high-speed phase-change material,” Physical Review B, vol. 69, Mar. 2004, pp. 18.
[11]Littlewood P.B. and Heine V., “The infrared effective charge in IV-VI compounds: I. A simple one-dimensional model,” vol. 12, 1979, p. 4431.
[12]Littlewood P.B., “The infrared effective charge in IV-VI compounds: II. A three dimensional calculation,” vol. 12, 1979, p. 4441.
[13]Lencer D., Salinga M., Grabowski B., Hickel T., Neugebauer J., and Wuttig M., “A map for phase-change materials,” Nature Materials, vol. 7, 2008, p. 972977.
[14]Shportko K., Kremers S., Woda M., Lencer D., Robertson J., and Wuttig M., “Resonant bonding in crystalline phase-change materials,” Nature Materials, vol. 7, 2008, p. 653658.
[15]Huang B. and Robertson J., “Bonding origin of optical contrast in phase-change memory materials,” Physical Review B, vol. 81, 2010, p. 1204.
[16]Wuttig M., Lüsebrink D., Wamwangi D., Wełnic W., Gillessen M., and Dronskowski R., “The role of vacancies and local distortions in the design of new phase-change materials.,” Nature materials, vol. 6, 2007, pp. 1228.
[17]Shamoto S., Yamada N., Matsunaga T., Proffen T., Richardson J.W. Jr., Chung J.H., and Egami T., “Large displacement of germanium atoms in crystalline Ge2Sb2Te5,” Appl. Phys. Lett., vol. 86, 2005, p. 1904.
[18]van Eijk J. M., Bichara C., Zalden P., Braun C., Buller S., Bensch W., and Wuttig M., “Differences in local order of amorphous and crystalline Ge1Sb2Te4 probed by X-Ray absorption spectroscopy,” submitted to Phys. Rev. B, 2011.
[19]Blachowicz T., Beghi M.G., Güntherodt G., Beschoten B., Dieker H., and Wuttig M., “Crystalline phases in the GeSb2Te4 alloy system: Phase transitions and elastic properties,” Journal of Applied Physics, vol. 102, 2007, p. 093519.
[20]These authors presented a corrected transformation of measured elastic constants from [17] to the bulk modulus: Caravati S., Bernasconi M., Kühne T., Krack M., and Parrinello M., “Unravelling the Mechanism of Pressure Induced Amorphization of Phase Change Materials,” Physical Review Letters, vol. 102, 2009, pp. 14.
[21]Park I., Jung J., Ryu S., Choi K., Yu B., Park Y., Han S., and Joo Y., “Thermomechanical properties and mechanical stresses of Ge2Sb2Te5 films in phase-change random access memory,” Thin Solid Films, vol. 517, Nov. 2008, pp. 848852.
[22]Rickers K., Brüggmann U., Drube W., Herrmann M., Heuer J., Welter E., Schulte-Schrepping H., and Schulz-Ritter H., “New XAFS Facility for In-Situ Measurements at Beamline C at HASYLAB,” AIP Conference Proceedings, vol. 879, 2007, p. 907.
[23]Ravel B. and Newville M., “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.,” Journal of synchrotron radiation, vol. 12, Jul. 2005, pp. 53741.
[24]Ankudinov A.L., Rehr J.J., and Conradson S.D., “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Physical Review B, vol. 58, Sep. 1998, pp. 75657576.
[25]Wille H.C., Hermann R.P., Sergueev I., Leupold O., Linden P.V.D., Sales B.C., Grandjean F., Long G.J., Rüffer R., and Shvydko Y.V., “Antimony vibrations in skutterudites probed by 121Sb nuclear inelastic scattering,” Phys. Rev. B, vol. 76, 2007, p. 140301.
[26]Wille H.C., Hermann R.P., Sergueev I., Pelzer U., Möchel A., Claudio T., Rüffer R., Said A., and Shvydko Y.V., “Nuclear forward and inelastic spectroscopy on 125Te and Sb2-125Te3,” Europhysics Letters, vol. 91, 2010, p. 62001.
[27]Koningsberger D.C. and Prins R., eds., X-Ray Absorption, John Wiley & Sons Ltd, 1988.
[28]Cordero B., Gómez V., Platero-Prats A.E., Revés M., Echeverría J., Cremades E., Barragán F., and Alvarez S., “Covalent radii revisited,” Dalton transactions (Cambridge, England: 2003), Jun. 2008, pp. 28322838.
[29]Gaspard J.P., Pellegatti A., Marinelli F., and Bichara C., “Peierls instabilities in covalent structures I. Electronic structure, cohesion and the Z=8-N rule,” Philosophical Magazine B, vol. 77, Mar. 1998, pp. 727744.
[30]Lencer D., “Design rules, local structure and lattice dynamics of phase change materials for data storage applications,” RWTH Aachen, 2011.
[31]Rüffer R. and Chumakov A.I., “Nuclear inelastic scattering,” Hyperfine Interactions, vol. 128, Jul. 2000, pp. 255272.
[32]Matsunaga T., Yamada N., Kojima R., Shamoto S., Sato M., Tanida H., Uruga T., Kohara S., Takata M., Zalden P., Bruns G., Sergueev I., Wille H.C., Hermann R.P., and Wuttig M., “Phase change materials: Vibrational softening upon crystallization and its impact on thermal properties,” Advanced Functional Materials, 2011.
[33]Maley N., Beeman D., and Lannin J.S., “Dynamics of tetrahedral networks Amorphous Si and Ge,” Physical Review B, vol. 38, 1988, p. 10611.
[34]Nellin G. and Nilsson G., “Phonon Density of States in Germanium at 80 K Measured by Neutron Spectrometry,” Physical Review B, vol. 5, 1972, p. 3151.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 88 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.