Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-25T02:58:50.977Z Has data issue: false hasContentIssue false

Thermal Treatment of Hg Containing I-VI Semiconductors by Annealing in a Mercury Bath (AMEBA)

Published online by Cambridge University Press:  25 February 2011

R. Kalish
Affiliation:
Technion-Israel Institute of Technology, Solid State Institute, Haifa, Israel 32 000
C. Uzan-Saguy
Affiliation:
Technion-Israel Institute of Technology, Solid State Institute, Haifa, Israel 32 000
Get access

Abstract

An extremely simple and inexpensive technique (AMEBA) for the thermal treatment of Hg containing specimens which permits short or long time annealing in a Hg rich atmosphere is described. It is based on the immersion of the sample, properly protected by proximity caps in, or above, a hot mercury bath. The sample assembly is such that it permits Hg vapors, but not the liquid, to reach the specimen's surface.

The usefulness of AMEBA in improving the electrical and structural properties of as-grown Hg1-xCdxTe (x = 0.21) and in removing ion implantation related damage as well as electrically activating B implants in various p-type HgCdTe samples is demonstrated. All the data presented show that AMEBA treatment yields results which are comparable or superior to those obtainable by convensional annealing methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Triboulet, R., J. Cryst. Growth 86 (1986) 79.CrossRefGoogle Scholar
(2) Sher, A., Tsigelman, A., Weiss, E., and Mainzer, N., J. Vac. Sci. Technol. A8 (1990) 1093.CrossRefGoogle Scholar
(3) Bubulac, L.O., Tennant, W.E., Riedel, R.A., and Magae, T.J., J. Vac. Sci. Technol. 21 (1982) 251.CrossRefGoogle Scholar
(4) Margalit, S., Nemirovsky, Y., and Rotstein, I., J. Appl. Phys. 50 (1979) 6386.CrossRefGoogle Scholar
(5) Bahir, G. and Finkman, E., J. Vac. Sci. Technol. A7 (1989) 348.CrossRefGoogle Scholar
(6) Jones, C.L., Quelch, M.J.T., Capper, P., and Gosney, J.J., J. Appl. Phys. 53 (1982) 9080.CrossRefGoogle Scholar
(7) Kalish, R., Fastow, R., Richter, V., and Shaanan, M., App. Phys. Lett. 51 1987) 1158.CrossRefGoogle Scholar
(8) , Uzan-Saguy and Kalish, R., Appl. Phys. Lett. 55 (1989) 1091.CrossRefGoogle Scholar
(9) Uzan-Saguy, C., Laser, D. and Kalish, R., J. Crys. Growth 101 (1990) 864.CrossRefGoogle Scholar
(10) Wagner, J., Koidl, P., Saguy-Uzan, C. and Kalish, R., to be published.Google Scholar
(11) Sylliaos, A.Y. and Williams, M.J., J. Vac. Sci. Technol. 21 (1982) 201.CrossRefGoogle Scholar
(12) Bahir, G. and Kalish, R., J. Appl. Phys. 54, (1983) 3129.CrossRefGoogle Scholar
(13) Saguy-Uzan, C., Comedi, D., Richter, V. and Kalish, R. J. Vac. Sci. Tech. A7 (1989) 2575.CrossRefGoogle Scholar
(14) Bubulac, L.O., Lo, D.S., Tennant, W.E., Edwall, D.D., Chen, J.C., Ratusnik, J., Robinson, J.C., and Bostrup, G., Apl. Phys. Lett. 50 (1987) 1586.CrossRefGoogle Scholar
(15) Lusson, A., Wagner, J., and Ramsteiner, M., Appl. Phys. Lett. 54 (1989) 1787.CrossRefGoogle Scholar