Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-14T21:35:31.254Z Has data issue: false hasContentIssue false

Time Resolved Optical Spectroscopy to Examine Chemical Decomposition of Energetic Materials Under Static High Pressure and Pulsed Heating Conditions

Published online by Cambridge University Press:  10 February 2011

Thomas P. Russell*
Affiliation:
Naval Research Laboratory, Chemistry Division, Code 6110, Washington, D.C. 20375–5320
Theresa M. Allen
Affiliation:
Naval Research Laboratory, Chemistry Division, Code 6110, Washington, D.C. 20375–5320
Y. M. Gupta
Affiliation:
Washington State University, Shock Dynamics Center, Pullman WA, 9164-2814
*
Author to Whom Correspondence Should Be Sent
Get access

Abstract

The study of the deflagration or detonation reactions of energetic materials is challenging due to the high pressure, high temperature, and time domain under which the reactions occur. Experimental measurements, are presented that demonstrate the ability to continuously monitor the global reaction times and reaction sequences associated with chemical reactions under these conditions. Time resolved absorption spectroscopy is used in conjunction with a high pressure gem anvil cell to probe the real-time chemical processes during pulsed-heating. Samples are initiated by a rapid thermal jump induced by absorption of a single laser pulse. Time resolved absorption spectroscopy of 3,6 trinitroethylamine tetrazine reaction is demonstrated by the real time measurement of the decrease in the ϕ-ϕ* absorption at 110 ns temporal resolution during laser heating at pressures up to 3.5 Gpa

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Piermarini, G. J., Block, S., and Miller, P. J.,, J. Phys. Chem, 91 (1987) 3872. and G. J.Piermarini, S. Block, and P. J.Miller, J. Phys. Chem., 93 (1989) 457.Google Scholar
2. Miller, P. J., Piermarini, G. J., and Block., S., Applied Spectroscopy, 38, (1984) 680.Google Scholar
3. Russell, T. P., Miller, P. J., Piermarini, G. J., , S. and Block, , J Phys. Chem., 97 (1993) 1993.Google Scholar
4. Rice, S. F. and Foltz, M. F., Combustion and Flame, 87 (1991) 107.Google Scholar
5. Blais, N. C., J Energetic Mat., 6 (1987) 255.Google Scholar
6. Rice, J. K. and Russell, T. P., Chem. Phys. Lett., 234 (1995) 195.Google Scholar
7. Russell, T. P., Allen, T. A., Rice, J. K., and Gupta, Y. M., De Physique, J., C IV Vol.5 (1995), 553.Google Scholar
8. Russell, T. P., Allen, T. A. and Gupta, Y. M., (to be submitted).Google Scholar
9. Weir, C. E., Lippincott, E. R., Van Valkenburg, A., and Bunting, E. N., J. Research NBS, 63A, 55 (1959).Google Scholar
10. Barnett, J. D., Block, S., and Piermarini, G. J., Rev. Sci Instrum., 44 (1973) 1.Google Scholar
11. Russell, T. P.and Piermarini, G. J. (to be submitted).Google Scholar
12. Piermarini, G. J., Block, S., Barnett, J. D., Forman, R. A., J Appl. Phys., 46 (1975) 2774. and Block, S. and Piermarini G. J., Physics Today, 29 (1976) 44.Google Scholar
13. Jacobs, P. W., Tompkins, F. C., In Chemistry of the Solid State; Garner, W. E. Ed.; Butterworth: London 1955; Chapter 7.Google Scholar
14. Dollimore, D., Dollimore, J., Nicholson, D., In Reactivity of Solids; deBoer, Ed., J. H. Elsevier: Amsterdam, 1961; p 627 Google Scholar