Skip to main content
×
×
Home

HASSE PRINCIPLES FOR ÉTALE MOTIVIC COHOMOLOGY

  • THOMAS H. GEISSER (a1)
Abstract

We discuss the kernel of the localization map from étale motivic cohomology of a variety over a number field to étale motivic cohomology of the base change to its completions. This generalizes the Hasse principle for the Brauer group, and is related to Tate–Shafarevich groups of abelian varieties.

Copyright
Footnotes
Hide All

Supported by JSPS Grant-in-Aid (C) 18K03258, (A) 15H02048-1.

Footnotes
References
Hide All
[1] Bloch, S., The moving lemma for higher Chow groups , J. Algebraic Geom. 3(3) (1994), 537568.
[2] Feng, T., Etale Steenrod operations and the Artin-Tate pairing, preprint, 2017, arXiv:1706.00151.
[3] Gabber, O., Sur la torsion dans la cohomologie l-adique d’une variétè , C. R. Math. Acad. Sci. Paris Sér. I Math. 297(3) (1983), 179182.
[4] Geisser, T., Motivic cohomology over Dedekind rings , Math. Z. 248(4) (2004), 773794.
[5] Geisser, T., Weil-etale cohomology , Math. Ann. 330 (2004), 665692.
[6] Geisser, T., On the structure of étale motivic cohomology , J. Pure Appl. Algebra 221(7) (2017), 16141628.
[7] Geisser, T., Comparing the Brauer group and the Tate-Shafarevich group, J. Inst. Math. Jussieu, to appear, arXiv:1712.06249.
[8] Geisser, T., Tate’s conjecture and the Tate-Shafarevich group over global function fields, preprint, 2018, arXiv:1801.02406.
[9] Geisser, T. and Levine, M., The K-theory of fields in characteristic p , Invent. Math. 139(3) (2000), 459493.
[10] Geisser, T. and Levine, M., The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , J. Reine Angew. Math. 530 (2001), 55103.
[11] Geisser, T. and Schmidt, A., Poitou-Tate duality for arithmetic schemes , Compos. Math. 154(9) (2018), 20202044.
[12] González-Avilés, C. D. and Tan, K.-S., A generalization of the Cassels-Tate dual exact sequence , Math. Res. Lett. 14(2) (2007), 295302.
[13] Grothendieck, A., “ Le groupe de Brauer. III. Exemples et compléments ”, in Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math. 3 , North-Holland, Amsterdam, 1968, 88188.
[14] Jannsen, U., Continuous étale cohomology , Math. Ann. 280(2) (1988), 207245.
[15] Jannsen, U., “ On the l-adic cohomology of varieties over number fields and its Galois cohomology ”, in Galois Groups Over ℚ (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16 , Springer, New York, 1989, 315360.
[16] Katz, N. and Lang, S., Finiteness theorems in geometric classfield theory , Enseign. Math. (2) 27(3–4) (1981), 285319; With an appendix by Kenneth A. Ribet. (1982).
[17] Kriz, I., On the arithmetic of elliptic curves and a homotopy limit problem , J. Number Theory 183 (2018), 466484.
[18] Lichtenbaum, S., “ Values of zeta-functions at nonnegative integers ”, in Number Theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Mathematics 1068 , Springer, Berlin, 1984, 127138.
[19] Liu, Q., Lorenzini, D. and Raynaud, M., Néron models, Lie algebras, and reduction of curves of genus one , Invent. Math. 157(3) (2004), 455518.
[20] Milne, J.S., Values of zeta functions of varieties over finite fields , Amer. J. Math. 108(2) (1986), 297360.
[21] Milne, J.S., Arithmetic duality theorems. Second edition. BookSurge, LLC, Charleston, SC, 2006. viii 339 pp. ISBN: 1-4196-4274-X.
[22] Milne, J.S., Etale Cohomology, Princeton Mathematical Series 33 , Princeton University Press, Princeton, NJ, 1980.
[23] Poonen, B., Rational Points on Varieties, Graduate Studies in Mathematics 186 , American Mathematical Society, Providence, RI, 2017.
[24] Poonen, B. and Stoll, M., The Cassels-Tate pairing on polarized abelian varieties , Ann. of Math. (2) 150(3) (1999), 11091149.
[25] Saito, S., “ A global duality theorem for varieties over global fields ”, in Algebraic K-theory: Connections with Geometry and Topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 279 , Kluwer, Dordrecht, 1989, 425444.
[26] Saito, S., Arithmetic on two-dimensional local rings , Invent. Math. 85(2) (1986), 379414.
[27] Schneider, P., Über gewisse Galoiscohomologiegruppen , Math. Z. 168(2) (1979), 181205.
[28] Voevodsky, V., On motivic cohomology with ℤ/l-coefficients , Ann. of Math. (2) 174 401438.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Nagoya Mathematical Journal
  • ISSN: 0027-7630
  • EISSN: 2152-6842
  • URL: /core/journals/nagoya-mathematical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed