Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.338 Render date: 2021-07-24T21:27:02.623Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Rank monotonicity in centrality measures

Published online by Cambridge University Press:  26 July 2017

PAOLO BOLDI
Affiliation:
Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy (e-mail: paolo.boldi@unimi.it, alessandro@luongo.pro, sebastiano.vigna@unimi.it)
ALESSANDRO LUONGO
Affiliation:
Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy (e-mail: paolo.boldi@unimi.it, alessandro@luongo.pro, sebastiano.vigna@unimi.it)
SEBASTIANO VIGNA
Affiliation:
Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy (e-mail: paolo.boldi@unimi.it, alessandro@luongo.pro, sebastiano.vigna@unimi.it)

Abstract

A measure of centrality is rank monotone if after adding an arc xy, all nodes with a score smaller than (or equal to) y have still a score smaller than (or equal to) y. If, in particular, all nodes with a score smaller than or equal to y get a score smaller than y (i.e., all ties with y are broken in favor of y), the measure is called strictly rank monotone. We prove that harmonic centrality is strictly rank monotone, whereas closeness is just rank monotone on strongly connected graphs, and that some other measures, including betweenness, are not rank monotone at all (sometimes not even on strongly connected graphs). Among spectral measures, damped scores such as Katz's index and PageRank are strictly rank monotone on all graphs, whereas the dominant eigenvector is strictly monotone on strongly connected graphs only.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Altman, A., & Tennenholtz, M. (2008). Axiomatic foundations for ranking systems. Journal of Artificial Intelligence Research, 31 (1), 473495.Google Scholar
Anthonisse, J. M. (1971). The rush in a directed graph. Tech. rept. BN 9/71. Mathematical Centre, Amsterdam.Google Scholar
Bavelas, A. (1948). A mathematical model for group structures. Human Organization, 7 (3), 1630.CrossRefGoogle Scholar
Bavelas, A., Barrett, D. & American Management Association. (1951). An experimental approach to organizational communication. Publications (Massachusetts Institute of Technology. Dept. of Economics and Social Science). Industrial Relations. New York: American Management Association.Google Scholar
Beauchamp, M. A. (1965). An improved index of centrality. Behavioral Science, 10 (2), 161163.CrossRefGoogle ScholarPubMed
Berge, C. (1958). Théorie des graphes et ses applications. Paris, France: Dunod.Google Scholar
Berman, A., & Plemmons, R. J. (1994). Nonnegative matrices in the mathematical sciences, Classics in Applied Mathematics. Philadelphia, PA: SIAM.CrossRefGoogle Scholar
Boldi, P., & Vigna, S. (2014). Axioms for centrality. Internet Mathematics, 10 (3–4), 222262.CrossRefGoogle Scholar
Bonacich, P. (1991). Simultaneous group and individual centralities. Social Networks, 13 (2), 155168.CrossRefGoogle Scholar
Brandes, U., Kosub, S., & Nick, B. (2012). Was messen Zentralitätsindizes? In Hennig, M., & Stegbauer, C., (Eds.), Die integration von theorie und methode in der netzwerkforschung (pp. 3352). Springer VS Verlag für Sozialwissenschaften, Springer Fachmedien Wiesbaden.CrossRefGoogle Scholar
Chien, S., Dwork, C., Kumar, R., Simon, D. R., & Sivakumar, D. (2004). Link evolution: Analysis and algorithms. Internet Mathematics, 1 (3), 277304.CrossRefGoogle Scholar
Cohn, B. S., & Marriott, M. (1958). Networks and centres of integration in Indian civilization. Journal of Social Research, 1, 19.Google Scholar
Dequiedt, V., & Zenou, Y. (2014). Local and consistent centrality measures in networks. Tech. rept. 2014:4. Stockholm University, Department of Economics.Google Scholar
Elsner, L. F., Johnson, C. R., & Neumann, M. M. (1982). On the effect of the perturbation of a nonnegative matrix on its Perron eigenvector. Czechoslovak Mathematical Journal, 32 (1), 99109.Google Scholar
Fishburn, P. C. (1982). Monotonicity paradoxes in the theory of elections. Discrete Applied Mathematics, 4 (2), 119134.CrossRefGoogle Scholar
Freeman, L. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1 (3), 215239.CrossRefGoogle Scholar
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40 (1), 3541.CrossRefGoogle Scholar
Garg, M. (2009). Axiomatic foundations of centrality in networks. Social Science Research Network. http://dx.doi.org/10.2139/ssrn.1372441.CrossRefGoogle Scholar
Hubbell, C. H. (1965). An input-output approach to clique identification. Sociometry, 28 (4), 377399.CrossRefGoogle Scholar
Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18 (1), 3943.CrossRefGoogle Scholar
Kitti, M. (2016). Axioms for centrality scoring with principal eigenvectors. Social Choice and Welfare, 46 (3), 639653.CrossRefGoogle Scholar
Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46 (5), 604632.CrossRefGoogle Scholar
Leavitt, H. J. (1951). Some effects of certain communication patterns on group performance. Journal of Abnormal Psychology, 46 (1), 3850.CrossRefGoogle ScholarPubMed
Lempel, R., & Moran, S. (2001). SALSA: The stochastic approach for link-structure analysis. ACM Transactions on Information Systems, 19 (2), 131160.CrossRefGoogle Scholar
Lin, N. (1976). Foundations of social research. New York: McGraw-Hill.Google Scholar
Mackenzie, K. (1966). Structural centrality in communications networks. Psychometrika, 31 (1), 1725.CrossRefGoogle Scholar
McDonald, J. J., Neumann, M., Schneider, H., & Tsatsomeros, M. J. (1995). Inverse M-matrix inequalities and generalized ultrametric matrices. Linear Algebra and its Applications, 220, 321341.CrossRefGoogle Scholar
Nieminen, U. J. (1973). On the centrality in a directed graph. Social Science Research, 2 (4), 371378.CrossRefGoogle Scholar
Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The PageRank citation ranking: Bringing order to the web. Tech. rept. SIDL-WP-1999-0120. Stanford Digital Library Technologies Project, Stanford University.Google Scholar
Palacios-Huerta, I., & Volij, O. (2004). The measurement of intellectual influence. Econometrica, 72 (3), 963977.CrossRefGoogle Scholar
Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing & Management, 12 (5), 297312.CrossRefGoogle Scholar
Pitts, F. R. (1965). A graph theoretic approach to historical geography. The Professional Geographer, 17 (5), 1520.CrossRefGoogle Scholar
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31 (4), 581603.CrossRefGoogle Scholar
Seeley, J. R. (1949). The net of reciprocal influence: A problem in treating sociometric data. Canadian Journal of Psychology, 3 (4), 234240.CrossRefGoogle Scholar
Vigna, S. (2016). Spectral ranking. Network Science, 4 (4), 433445.CrossRefGoogle Scholar
Wei, T.-H. (1952). The Algebraic Foundations of Ranking Theory. Ph.D. thesis, University of Cambridge.Google Scholar
Willoughby, R. A. (1977). The inverse M-matrix problem. Linear Algebra and its Applications, 18 (1), 7594.CrossRefGoogle Scholar
4
Cited by

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Rank monotonicity in centrality measures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Rank monotonicity in centrality measures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Rank monotonicity in centrality measures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *