Skip to main content
×
×
Home

Data on face-to-face contacts in an office building suggest a low-cost vaccination strategy based on community linkers

  • MATHIEU GÉNOIS (a1), CHRISTIAN L. VESTERGAARD (a1), JULIE FOURNET (a1), ANDRÉ PANISSON (a2), ISABELLE BONMARIN (a3) and ALAIN BARRAT (a4)...
Abstract

Empirical data on contacts between individuals in social contexts play an important role in providing information for models describing human behavior and how epidemics spread in populations. Here, we analyze data on face-to-face contacts collected in an office building. The statistical properties of contacts are similar to other social situations, but important differences are observed in the contact network structure. In particular, the contact network is strongly shaped by the organization of the offices in departments, which has consequences in the design of accurate agent-based models of epidemic spread. We consider the contact network as a potential substrate for infectious disease spread and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we define three typical behaviors according to the fraction f of links each individual shares outside its own department: residents, wanderers, and linkers. Linkers (f ~ 50%) act as bridges in the network and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently prevents large outbreaks. As such a behavior may be spotted a priori in the offices' organization or from surveys, without the full knowledge of the time-resolved contact network, this result may help the design of efficient, low-cost vaccination or social-distancing strategies.

Copyright
References
Hide All
Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J., . . . Vespignani, A. (2010). Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 10 (1), 190.
Ajelli, M., Poletti, P., Melegaro, A., & Merler, S. (2014). The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Scientific Reports, 4, 7218.
Barabàsi, A.-L. (2005). The origin of bursts and heavy tails in human dynamics. Nature, 435, 207.
Barrat, A., Cattuto, C., Colizza, V., Gesualdo, F., Isella, L., Pandolfi, E., . . . Broeck, W. (2013). Empirical temporal networks of face-to-face human interactions. The European Physical Journal Special Topics, 222 (6), 12951309.
Barrat, A., Cattuto, C., Tozzi, A. E., Vanhems, P., & Voirin, N. (2014). Measuring contact patterns with wearable sensors: Methods, data characteristics and applications to data-driven simulations of infectious diseases. Clinical Microbiology and Infections, 20 (1), 1016.
Blower, S., & Go, M.-H. (2011). The importance of including dynamic social networks when modeling epidemics of airborne infections: Does increasing complexity increase accuracy? BMC Medicine, 9 (1), 88.
Brown, C., Efstratiou, C., Leontiadis, I., Quercia, D., & Mascolo, C. (2014b). Tracking serendipitous interactions: How individual cultures shape the office. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing. CSCW '14. New York, NY, USA: ACM, pp. 10721081.
Brown, C., Efstratiou, C., Leontiadis, I., Quercia, D., Mascolo, C., Scott, J., & Key, P. (2014a). The architecture of innovation: Tracking face-to-face interactions with ubicomp technologies. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp'14. New York, NY, USA: ACM, pp. 811822.
Castellano, C. & Pastor-Satorras, R. (2012). Competing activation mechanisms in epidemics on networks. Scientific Reports, 2, 371.
Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., & Vespignani, A. (2010). Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE, 5 (7), e11596.
Chowell, G., & Viboud, C. (2013). A practical method to target individuals for outbreak detection and control. BMC Medicine, 11 (1), 36.
Christley, R. M., Pinchbeck, G. L., Bowers, R. G., Clancy, D., French, N. P., Bennett, R., & Turner, J. (2005). Infection in social networks: Using network analysis to identify high-risk individuals. American Journal of Epidemiology, 162 (10), 10241031.
Dall'Asta, L., Barrat, A., Barthélemy, M., & Vespignani, A. (2006). Vulnerability of weighted networks. Journal of Statistical Mechanics: Theory and Experiment, 2006 (04), P04006.
Davey, V. J., Glass, R.t J., Min, H. J., Beyeler, W. E., & Glass, L. M. (2008). Effective, robust design of community mitigation for pandemic influenza: A systematic examination of proposed US guidance. PLoS ONE, 3 (7).
Eagle, N., Pentland, A. (Sandy), & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106 (36), 1527415278.
Fournet, J., & Barrat, A. (2014). Contact patterns among high school students. PLoS ONE, 9 (9), e107878.
Gauvin, L., Panisson, A., & Cattuto, C. (2014). Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach. Plos One, 9 (1), e86028.
Gauvin, L., Panisson, A., Cattuto, C., & Barrat, A. (2013). Activity clocks: Spreading dynamics on temporal networks of human contact. Scientific Reports, 3, 3099.
Gemmetto, V., Barrat, A., & Cattuto, C. (2014). Mitigation of infectious disease at school: Targeted class closure vs school closure. BMC Infectious Diseases, 14 (1), 695.
Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78, 13601380.
Hébert-Dufresne, L., Allard, A., Young, J.-G., & Dubé, L. J. (2013). Global efficiency of local immunization on complex networks. Scientific Reports, 3, 2171.
Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex networks. Physical Review E, 65 (May), 056109.
Holme, P. & Saramäki, J. (2012). Temporal networks. Physics Reports, 519 (3), 97125.
Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., . . . Tozzi, A. E. (2011a). Close encounters in a pediatric ward: Measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE, 6 (2), e17144.
Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., & Van den Broeck, W. (2011b). What's in a crowd? Analysis of face-to-face behavioral networks. Journal of Theoretical Biology, 271 (1), 166180.
Karsai, M., Kivela, M., Pan, R. K., Kaski, K., Kertesz, J., Barabási, A. L., & Saramäki, J. (2011). Small but slow world: How network topology and burstiness slow down spreading. Physical Review E, 83 (2), 025102.
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6 (11), 888893.
Lee, S., Rocha, L. E. C., Liljeros, F., & Holme, P. (2012). Exploiting temporal network structures of human interaction to effectively immunize populations. PLoS ONE, 7 (5), e36439.
Machens, A., Gesualdo, F., Rizzo, C., Tozzi, A., Barrat, A., & Cattuto, C. (2013). An infectious disease model on empirical networks of human contact: Bridging the gap between dynamic network data and contact matrices. BMC Infectious Diseases, 13 (1), 185.
Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296 (5569), 910913.
Merler, S., & Ajelli, M. (2010). The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proceedings of the Royal Society B-Biological Sciences, 277 (1681), 557565.
Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., . . . Edmunds, W. J. (2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Medicine, 5 (3), e74.
Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., de Menezes, M. A., Kaski, K., . . . Kertész, J. (2007). Analysis of a large-scale weighted network of one-to-one human communication. New Journal of Physics, 9 (6), 179.
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32 (3), 245251.
Pastor-Satorras, R., & Vespignani, A. (2002). Immunization of complex networks. Physical Review E, 65 (Feb), 036104.
Penn, A., Desyllas, J., & Vaughan, L. (1999). The space of innovation: Interaction and communication in the work environment. Environment and Planning B: Planning and Design, 26 (2), 193218.
Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J., & Schweitzer, F. (2013). Betweenness preference: Quantifying correlations in the topological dynamics of temporal networks. Physical Review Letters, 110 (May), 198701.
Read, J. M., Edmunds, W. J., Riley, S., Lessler, J., & Cummings, D. A. T. (2012). Close encounters of the infectious kind: Methods to measure social mixing behaviour. Epidemiology and Infection, 140 (12), 21172130.
Sailer, K. & McCulloh, I. (2012). Social networks and spatial configuration–-how office layouts drive social interaction. Social Networks, 34 (1), 4758.
Salathé, M., & Jones, J. H. (2010). Dynamics and control of diseases in networks with community structure. PLoS Computational Biology, 6 (4), e1000736.
Salathé, M., Kazandjieva, M., Lee, J. Woo, L., Philip, F., Marcus, W., & Jones, J. H. (2010). A high-resolution human contact network for infectious disease transmission. Proceedings of the National Academy of Sciences, 107 (51), 2202022025.
Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C. J., & Schweitzer, F. (2014). Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nature Communications, 5, 5024.
Smieszek, T., Fiebig, L., & Scholz, R. (2009). Models of epidemics: When contact repetition and clustering should be included. Theoretical Biology and Medical Modelling, 6 (1), 11.
Smieszek, T., & Salathé, M. (2013). A low-cost method to assess the epidemiological importance of individuals in controlling infectious disease outbreaks. BMC Medicine, 11 (1), 35.
Starnini, M., Machens, A., Cattuto, C., Barrat, A., & Pastor-Satorras, R. (2013). Immunization strategies for epidemic processes in time-varying contact networks. Journal of Theoretical Biology, 337 (0), 89100.
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., . . . Vanhems, P. (2011a). High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE, 6 (8), e23176.
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Colizza, V., Isella, L., . . . & Vanhems, P. (2011b). Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees. BMC Medicine, 9 (1), 87.
Stopczynski, A., Sekara, V., Sapiezynski, P., Cuttone, A., Madsen, M. M., Larsen, J. E., & Lehmann, S. (2014). Measuring large-scale social networks with high resolution. PLoS ONE, 9 (4), e95978.
Vanhems, P., Barrat, A., Cattuto, C., Pinton, J.-F., Khanafer, N., Régis, C., . . . Voirin, N. (2013). Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE, 8 (9), e73970.
Vu, L., Nahrstedt, K., Retika, S., & Gupta, I. (2010). Joint Bluetooth/Wifi scanning framework for characterizing and leveraging people movement in University campus. In MSWIM 2010: Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems. 1515 Broadway, New York, NY 10036-9998 USA: ASSOC Computing Machinery, for ACM SIGSIM, pp. 257265.
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.
Zhang, Y., Wang, L., Zhang, Y.-Q., & Li, X. (2012). Towards a temporal network analysis of interactive WiFi users. Europhysics Letters, 98 (6), 68002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Network Science
  • ISSN: 2050-1242
  • EISSN: 2050-1250
  • URL: /core/journals/network-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Génois supplementary material S1
Génois supplementary material S1

 PDF (2.8 MB)
2.8 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed