Skip to main content Accessibility help

Physiological responses to food intake throughout the day

  • Jonathan D. Johnston (a1)


Circadian rhythms act to optimise many aspects of our biology and thereby ensure that physiological processes are occurring at the most appropriate time. The importance of this temporal control is demonstrated by the strong associations between circadian disruption, morbidity and disease pathology. There is now a wealth of evidence linking the circadian timing system to metabolic physiology and nutrition. Relationships between these processes are often reciprocal, such that the circadian system drives temporal changes in metabolic pathways and changes in metabolic/nutritional status alter core molecular components of circadian rhythms. Examples of metabolic rhythms include daily changes in glucose homeostasis, insulin sensitivity and postprandial response. Time of day alters lipid and glucose profiles following individual meals whereas, over a longer time scale, meal timing regulates adiposity and body weight; these changes may occur via the ability of timed feeding to synchronise local circadian rhythms in metabolically active tissues. Much of the work in this research field has utilised animal and cellular model systems. Although these studies are highly informative and persuasive, there is a largely unmet need to translate basic biological data to humans. The results of such translational studies may open up possibilities for using timed dietary manipulations to help restore circadian synchrony and downstream physiology. Given the large number of individuals with disrupted rhythms due to, for example, shift work, jet-lag, sleep disorders and blindness, such dietary manipulations could provide widespread improvements in health and also economic performance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Physiological responses to food intake throughout the day
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Physiological responses to food intake throughout the day
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Physiological responses to food intake throughout the day
      Available formats


The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence

Corresponding author

* Corresponding author: Dr Jonathan D. Johnston, fax +44 1483 686401, email


Hide All
1 Pittendrigh, CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55, 1654.
2 Ouyang, Y, Andersson, CR, Kondo, T, et al. (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci U S A 95, 86608664.
3 Moore, RY & Eichler, VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42, 201206.
4 Stephan, FK & Zucker, I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69, 15831586.
5 Inouye, ST & Kawamura, H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 76, 59625966.
6 Shibata, S, Oomura, Y, Kita, H, et al. (1982) Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res 247, 154158.
7 Groos, G & Hendriks, J (1982) Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro . Neurosci Lett 34, 283288.
8 Ralph, MR, Foster, RG, Davis, FC, et al. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975978.
9 Tosini, G & Menaker, M (1996) Circadian rhythms in cultured mammalian retina. Science 272, 419421.
10 Sakamoto, K, Nagase, T, Fukui, H, et al. (1998) Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 273, 2703927042.
11 Zylka, MJ, Shearman, LP, Weaver, DR, et al. (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 11031110.
12 Yamazaki, S, Numano, R, Abe, M, et al. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682685.
13 Yoo, SH, Yamazaki, S, Lowrey, PL, et al. (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101, 53395346.
14 Balsalobre, A, Damiola, F & Schibler, U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929937.
15 Nagoshi, E, Saini, C, Bauer, C, et al. (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693705.
16 Welsh, DK, Yoo, SH, Liu, AC, et al. (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14, 22892295.
17 Albrecht, U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74, 246260.
18 Cagampang, FR & Bruce, KD (2012) The role of the circadian clock system in nutrition and metabolism. Br J Nutr 108, 381392.
19 Johnston, JD (2012) Adipose circadian rhythms: translating cellular and animal studies to human physiology. Mol Cell Endocrinol 349, 4550.
20 Boivin, DB, James, FO, Wu, A, et al. (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102, 41434145.
21 Archer, SN, Viola, AU, Kyriakopoulou, V, et al. (2008) Inter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1, PER2 and PER3 mRNA in human leukocytes. Sleep 31, 608617.
22 Brown, SA, Fleury-Olela, F, Nagoshi, E, et al. (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3, e338.
23 Hasan, S, Santhi, N, Lazar, AS, et al. (2012) Assessment of circadian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin. FASEB J 26, 24142423.
24 Gomez-Santos, C, Gomez-Abellan, P, Madrid, JA, et al. (2009) Circadian rhythm of clock genes in human adipose explants. Obesity 17, 14811485.
25 Otway, DT, Mantele, S, Bretschneider, S, et al. (2011) Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60, 15771581.
26 Stamenkovic, JA, Olsson, AH, Nagorny, CL, et al. (2012) Regulation of core clock genes in human islets. Metabolism 61, 978985.
27 Schmidt, TM, Do, MT, Dacey, D, et al. (2011) Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J Neurosci 31, 1609416101.
28 Dibner, C & Schibler, U (2010) Albrecht U The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72, 517549.
29 Akhtar, RA, Reddy, AB, Maywood, ES, et al. (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12, 540550.
30 Duffield, GE, Best, JD, Meurers, BH, et al. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12, 551557.
31 Panda, S, Antoch, MP, Miller, BH, et al. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307320.
32 Storch, KF, Lipan, O, Leykin, I, et al. (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417, 7883.
33 Zvonic, S, Ptitsyn, AA, Conrad, SA, et al. (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55, 962970.
34 Reddy, AB, Karp, NA, Maywood, ES, et al. (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16, 11071115.
35 Minami, Y, Kasukawa, T, Kakazu, Y, et al. (2009) Measurement of internal body time by blood metabolomics. Proc Natl Acad Sci U S A 106, 98909895.
36 Eckel-Mahan, KL, Patel, VR, Mohney, RP, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109, 55415546.
37 Fustin, JM, Doi, M, Yamada, H, et al. (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1, 341349.
38 Dallmann, R, Viola, AU, Tarokh, L, et al. (2012) The human circadian metabolome. Proc Natl Acad Sci U S A 109, 26252629.
39 Ang, JE, Revell, V, Mann, A, et al. (2012) Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int 29, 868881.
40 Kasukawa, T, Sugimoto, M, Hida, A, et al. (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 109, 1503615041.
41 Johnston, JD, Frost, G & Otway, DT (2009) Adipose tissue, adipocytes and the circadian timing system. Obes Rev 10, Suppl. 2, 5260.
42 Raspe, E, Duez, H, Mansen, A, et al. (2002) Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. J Lipid Res 43, 21722179.
43 Rudic, RD, McNamara, P, Curtis, AM, et al. (2004) BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2, e377.
44 Turek, FW, Joshu, C, Kohsaka, A, et al. (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 10431045.
45 Yang, S, Liu, A, Weidenhammer, A, et al. (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150, 21532160.
46 Costa, MJ, So, AY, Kaasik, K, et al. (2011) Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. J Biol Chem 286, 90639070.
47 Cho, H, Zhao, X, Hatori, M, et al. (2012) Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485, 123127.
48 Woon, PY, Kaisaki, PJ, Braganca, J, et al. (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc Natl Acad Sci U S A 104, 1441214417.
49 Scott, EM, Carter, AM & Grant, PJ (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes 32, 658662.
50 Sookoian, S, Gemma, C, Gianotti, TF, et al. (2008) Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87, 16061615.
51 Tsuzaki, K, Kotani, K, Sano, Y, et al. (2010) The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study. BMC Med Genet 11, 150.
52 Garaulet, M, Corbalan-Tutau, MD, Madrid, JA, et al. (2010) PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. JAMA 110, 917921.
53 Garaulet, M, Esteban Tardido, A, et al. (2012) Lee YC. SIRT1 and CLOCK 3111T>C combined genotype is associated with evening preference and weight loss resistance in a behavioral therapy treatment for obesity. Int J Obes 36, 14361441.
54 Lamia, KA, Storch, KF & Weitz, CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105, 1517215177.
55 Marcheva, B, Ramsey, KM, Buhr, ED, et al. (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627631.
56 Sadacca, LA, Lamia, KA, deLemos, AS, et al. (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54, 120124.
57 Paschos, GK, Ibrahim, S, Song, WL, et al. (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18, 17681777.
58 Stephan, FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17, 284292.
59 Mistlberger, RE (2009) Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 30, 17181729.
60 Challet, E, Mendoza, J, Dardente, H, et al. (2009) Neurogenetics of food anticipation. Eur J Neurosci 30, 16761687.
61 Storch, KF & Weitz, CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106, 68086813.
62 Krieger, DT, Hauser, H & Krey, LC (1977) Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science 197, 398399.
63 Stephan, FK (1981) Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. J Comp Physiol 143, 401410.
64 Mieda, M, Williams, SC, Richardson, JA, et al. (2006) The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci U S A 103, 1215012155.
65 Fuller, PM, Lu, J & Saper, CB (2008) Differential rescue of light- and food-entrainable circadian rhythms. Science 320, 10741077.
66 Mendoza, J, Pevet, P, Felder-Schmittbuhl, MP, et al. (2010) The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci 30, 18941904.
67 Mistlberger, RE, Buijs, RM, Challet, E, et al. (2009) Standards of evidence in chronobiology: critical review of a report that restoration of Bmal1 expression in the dorsomedial hypothalamus is sufficient to restore circadian food anticipatory rhythms in Bmal1-/- mice. J Circ Rhythms 7, 3.
68 Moriya, T, Aida, R, Kudo, T, et al. (2009) The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Eur J Neurosci 29, 14471460.
69 Landry, GJ, Kent, BA, Patton, DF, et al. (2011) Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PloS ONE 6, e24187.
70 Damiola, F, Le Minh, N, Preitner, N, et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14, 29502961.
71 Stokkan, KA, Yamazaki, S, Tei, H, et al. (2001) Entrainment of the circadian clock in the liver by feeding. Science 291, 490493.
72 Hoogerwerf, WA, Hellmich, HL, Cornelissen, G, et al. (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133, 12501260.
73 Yoshida, C, Shikata, N, Seki, S, et al. (2012) Early nocturnal meal skipping alters the peripheral clock and increases lipogenesis in mice. Nutr Metab 9, 78.
74 Mendoza, J, Graff, C, Dardente, H, et al. (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25, 15141522.
75 Mendoza, J, Gourmelen, S, Dumont, S, et al. (2012) Setting the main circadian clock of a diurnal mammal by hypocaloric feeding. J Physiol 590, 31553168.
76 Mendoza, J, Drevet, K, Pevet, P, et al. (2008) Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction. J Neuroendocrinol 20, 251260.
77 Kuroda, H, Tahara, Y, Saito, K, et al. (2012) Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci Rep 2, 711.
78 Wu, T, Sun, L, ZhuGe, F, et al. (2011) Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology. Chronobiol Int 28, 890903.
79 Hirao, A, Nagahama, H, Tsuboi, T, et al. (2010) Combination of starvation interval and food volume determines the phase of liver circadian rhythm in Per2:Luc knock-in mice under two meals per day feeding. Am J Physiol 299, G1045G1053.
80 Krauchi, K, Cajochen, C, Werth, E, et al. (2002) Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 17, 364376.
81 Schoeller, DA, Cella, LK, Sinha, MK, et al. (1997) Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 100, 18821887.
82 Itokawa, M, Hirao, A, Nagahama, H, et al. (2013) Time-restricted feeding of rapidly digested starches causes stronger entrainment of the liver clock in PER2:LUCIFERASE knock-in mice. Nutr Res 33, 109119.
83 Hirao, A, Tahara, Y, Kimura, I, et al. (2009) A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PloS ONE 4, e6909.
84 Le Minh, N, Damiola, F, Tronche, F, et al. (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20, 71287136.
85 Balsalobre, A, Brown, SA, Marcacci, L, et al. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 23442347.
86 Vollmers, C, Gill, S, DiTacchio, L, et al. (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 106, 2145321458.
87 Asher, G, Reinke, H, Altmeyer, M, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943953.
88 Zhang, L, Abraham, D, Lin, ST, et al. (2012) PKCγ participates in food entrainment by regulating BMAL1. Proc Natl Acad Sci U S A 109, 2067920684.
89 Van Cauter, E, Polonsky, KS & Scheen, AJ (1997) Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev 18, 716738.
90 Sopowski, MJ, Hampton, SM, Ribeiro, DC, et al. (2001) Postprandial triacylglycerol responses in simulated night and day shift: gender differences. J Biol Rhythms 16, 272276.
91 Burdge, GC, Jones, AE, Frye, SM, et al. (2003) Effect of meal sequence on postprandial lipid, glucose and insulin responses in young men. Eur J Clin Nutr 57, 15361544.
92 Trujillo, ME & Scherer, PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27, 762778.
93 Galic, S, Oakhill, JS & Steinberg, GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316, 129139.
94 Sinha, MK, Ohannesian, JP, Heiman, ML, et al. (1996) Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 97, 13441347.
95 Gavrila, A, Peng, CK, Chan, JL, et al. (2003) Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab 88, 28382843.
96 Parlee, SD, Ernst, MC, Muruganandan, S, et al. (2010) Serum chemerin levels vary with time of day and are modified by obesity and tumor necrosis factor-α. Endocrinology 151, 25902602.
97 Scheer, FA, Chan, JL, Fargnoli, J, et al. (2010) Day/night variations of high-molecular-weight adiponectin and lipocalin-2 in healthy men studied under fed and fasted conditions. Diabetologia 53, 24012405.
98 Benedict, C, Shostak, A, Lange, T, et al. (2012) Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): impact of sleep loss and relation to glucose metabolism. J Clin Endocrinol Metab 97, E218E222.
99 Shea, SA, Hilton, MF, Orlova, C, et al. (2005) Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 90, 25372544.
100 Otway, DT, Frost, G & Johnston, JD (2009) Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiol Int 26, 13401354.
101 Duffy, JF & Dijk, DJ (2002) Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17, 413.
102 Blatter, K & Cajochen, C (2007) Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav 90, 196208.
103 Holmback, U, Forslund, A, Forslund, J, et al. (2002) Metabolic responses to nocturnal eating in men are affected by sources of dietary energy. J Nutr 132, 18921899.
104 Morgan, L, Arendt, J, Owens, D, et al. (1998) Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol 157, 443451.
105 Scheer, FA, Hilton, MF, Mantzoros, CS, et al. (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106, 44534458.
106 Gonnissen, HK, Rutters, F, Mazuy, C, et al. (2012) Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. Am J Clin Nutr 96, 689697.
107 Matkovic, V, Ilich, JZ, Badenhop, NE, et al. (1997) Gain in body fat is inversely related to the nocturnal rise in serum leptin level in young females. J Clin Endocrinol Metab 82, 13681372.
108 Saad, MF, Riad-Gabriel, MG, Khan, A, et al. (1998) Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity. J Clin Endocrinol Metab 83, 453459.
109 Yildiz, BO, Suchard, MA, Wong, ML, et al. (2004) Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc Natl Acad Sci U S A 101, 1043410439.
110 Mantele, S, Otway, DT, Middleton, B, et al. (2012) Daily rhythms of plasma melatonin, but not plasma leptin or leptin mRNA, vary between lean, obese and type 2 diabetic men. PLOS ONE 7, e37123.
111 Arendt, J, Hampton, S, English, J, et al. (1982) 24-Hour profiles of melatonin, cortisol, insulin, C-peptide and GIP following a meal and subsequent fasting. Clin Endocrinol 16, 8995.
112 Corbalan-Tutau, D, Madrid, JA, Nicolas, F, et al. (2014) Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol Behav 123, 231235.
113 Bouatia-Naji, N, Bonnefond, A, Cavalcanti-Proenca, C, et al. (2009) A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 41, 8994.
114 Lyssenko, V, Nagorny, CL, Erdos, MR, et al. (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41, 8288.
115 Prokopenko, I, Langenberg, C, Florez, JC, et al. (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41, 7781.
116 Ronn, T, Wen, J, Yang, Z, et al. (2009) A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 52, 830833.
117 Bonnefond, A, Clement, N, Fawcett, K, et al. (2012) Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet 44, 297301.
118 Mulder, H, Nagorny, CL, Lyssenko, V, et al. (2009) Melatonin receptors in pancreatic islets: good morning to a novel type 2 diabetes gene. Diabetologia 52, 12401249.
119 Contreras-Alcantara, S, Baba, K & Tosini, G (2010) Removal of melatonin receptor type 1 induces insulin resistance in the mouse. Obesity 18, 18611863.
120 Nogueira, TC, Lellis-Santos, C, Jesus, DS, et al. (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 152, 12531263.
121 McMullan, CJ, Schernhammer, ES, Rimm, EB, et al. (2013) Melatonin secretion and the incidence of type 2 diabetes. JAMA 309, 13881396.
122 McMullan, CJ, Curhan, GC, Schernhammer, ES, et al. (2013) Association of nocturnal melatonin secretion with insulin resistance in nondiabetic young women. Am J Epidemiol 178, 231238.
123 Ando, H, Yanagihara, H, Hayashi, Y, et al. (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146, 56315636.
124 Ando, H, Kumazaki, M, Motosugi, Y, et al. (2011) Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology 152, 13471354.
125 Ando, H, Oshima, Y, Yanagihara, H, et al. (2006) Profile of rhythmic gene expression in the livers of obese diabetic KK-A(y) mice. Biochem Biophys Res Comm 346, 12971302.
126 Kaneko, K, Yamada, T, Tsukita, S, et al. (2009) Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res 1263, 5868.
127 Kohsaka, A, Laposky, AD, Ramsey, KM, et al. (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6, 414421.
128 Barnea, M, Madar, Z & Froy, O (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150, 161168.
129 Hsieh, MC, Yang, SC, Tseng, HL, et al. (2010) Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes 34, 227239.
130 Yanagihara, H, Ando, H, Hayashi, Y, et al. (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23, 905914.
131 Duffy, JF, Cain, SW, Chang, AM, et al. (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci U S A 108, Suppl. 3, 1560215608.
132 Tchernof, A & Després, JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93, 359404.
133 Arble, DM, Bass, J, Laposky, AD, et al. (2009) Circadian timing of food intake contributes to weight gain. Obesity 17, 21002102.
134 Sherman, H, Genzer, Y, Cohen, R, et al. (2012) Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 26, 34933502.
135 de la Hunty, A & Gibson, S (2013) Ashwell M Does regular breakfast cereal consumption help children and adolescents stay slimmer? A systematic review and meta-analysis. Obes Facts 6, 7085.
136 Casazza, K, Fontaine, KR, Astrup, A, et al. (2013) Myths, presumptions, and facts about obesity. New Eng J Med 368, 446454.
137 Berner, LA & Allison, KC (2013) Behavioral management of night eating disorders. Psychol Res Behav Manag 6, 18.
138 Gallant, AR, Lundgren, J & Drapeau, V (2012) The night-eating syndrome and obesity. Obes Rev 13, 528536.
139 Baron, KG, Reid, KJ, Kern, AS, et al. (2011) Role of sleep timing in caloric intake and BMI. Obesity 19, 13741381.
140 Baron, KG, Reid, KJ, Horn, LV, et al. (2013) Contribution of evening macronutrient intake to total caloric intake and body mass index. Appetite 60, 246251.
141 Garaulet, M, Gomez-Abellan, P, Alburquerque-Bejar, JJ, et al. (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes 37, 604611.
142 Jakubowicz, D, Barnea, M, Wainstein, J, et al. (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity 21, 25042512.
143 Costa, G (2003) Shift work and occupational medicine: an overview. Occup Med 53, 8388.
144 Wittmann, M, Dinich, J, Merrow, M, et al. (2006) Social jetlag: misalignment of biological and social time. Chronobiol Int 23, 497509.
145 Roenneberg, T, Allebrandt, KV, Merrow, M, et al. (2012) Social jetlag and obesity. Curr Biol 22, 939943.
146 Tucker, P, Marquie, JC, Folkard, S, et al. (2012) Shiftwork and metabolic dysfunction. Chronobiol Int 29, 549555.
147 Esquirol, Y, Bongard, V, Mabile, L, et al. (2009) Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms. Chronobiol Int 26, 544559.
148 Lowden, A, Moreno, C, Holmback, U, et al. (2010) Eating and shift work - effects on habits, metabolism and performance. Scan J Work Environ Health 36, 150162.
149 Folkard, S (2008) Do permanent night workers show circadian adjustment? A review based on the endogenous melatonin rhythm. Chronobiol Int 25, 215224.
150 Ribeiro, DC, Hampton, SM, Morgan, L, et al. (1998) Altered postprandial hormone and metabolic responses in a simulated shift work environment. J Endocrinol 158, 305310.
151 Hampton, SM, Morgan, LM, Lawrence, N, et al. (1996) Postprandial hormone and metabolic responses in simulated shift work. J Endocrinol 151, 259267.
152 Lund, J, Arendt, J, Hampton, SM, et al. (2001) Postprandial hormone and metabolic responses amongst shift workers in Antarctica. J Endocrinol 171, 557564.
153 Vandewalle, G, Maquet, P & Dijk, DJ (2009) Light as a modulator of cognitive brain function. Trends Cog Sci 13, 429438.
154 Chang, AM, Santhi, N, St Hilaire, M, et al. (2012) Human responses to bright light of different durations. J Physiol 590, 31033112.
155 Barclay, JL, Husse, J, Bode, B, et al. (2012) Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLOS ONE 7, e37150.
156 Salgado-Delgado, R, Angeles-Castellanos, M, Saderi, N, et al. (2010) Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151, 10191029.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed