Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-j4fss Total loading time: 0.875 Render date: 2022-09-28T22:37:14.271Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

The role of anaerobic gut fungi in ruminants

Published online by Cambridge University Press:  14 December 2007

Geoffrey L. R. Gordon
Affiliation:
Commonwealth Scientific and Industrial Research Organisation (C.S.I.R.O.), Division of Animal Production, Locked Bag 1, Delivery Centre, Blacktown, New South Wales 2148, Australia
Michael W. Phillips
Affiliation:
Commonwealth Scientific and Industrial Research Organisation (C.S.I.R.O.), Division of Animal Production, Locked Bag 1, Delivery Centre, Blacktown, New South Wales 2148, Australia
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Anaerobic chytridiomycete fungi are found in the gastrointestinal tracts of sheep, cattle and goats, as well as in many other domesticated ruminant and nonruminant herbivores and a wide variety of wild herbivorous mammals. They are principally found associated with the fibrous plant particles of digesta and as free swimming zoospores in the fluid phase. The presence of large fungal populations in animals consuming mature pasture or diets largely composed of hay or straw together with the production of highly active fibre degrading enzymes lead to' the belief that anaerobic fungi may have a significant role to play in the assimilation of fibrous feeds by ruminants. While many early studies focused on anaerobic fungi because of their unusual biology and metabolism, the large part of subsequent research has emphasized the biotechnological potential of their cellulases, xylanases and phenolic esterases. In recent years, the extent of the contribution of anaerobic fungi to the nutrition of ruminants has also been established through studies of fungal populations in the rumen and the dietary factors which influence them, as presented in this review. Further, we discuss the evidence supporting an important contribution of anaerobic fungal populations in the rumen to feed intake and digestion of poor quality feed by domesticated ruminants. In conclusion, the review explores some different methods for manipulating fungi in the rumen for increased feed intake and digestion.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Akin, D. E. (1987 a). Association of rumen fungi with various forage grasses. Animal Feed Science and Technology 16, 273285.CrossRefGoogle Scholar
Akin, D. E. (1987 b). Use of chitinase to assess ruminal fungi associated with plant residues in vitro. Applied and Environmental Microbiology 53, 19551958.Google ScholarPubMed
Akin, D. E. & Benner, R. (1988). Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology 54, 11171125.Google ScholarPubMed
Akin, D. E. & Borneman, W. S. (1990). Role of rumen fungi in fiber degradation. Journal of Dairy Science 73, 30233032.CrossRefGoogle ScholarPubMed
Akin, D. E., Borneman, W. S. & Lyon, C. E. (1990). Degradation of leaf blades and stems by monocentric and polycentric isolates of ruminal fungi. Animal Feed Science and Technology 31, 205221.CrossRefGoogle Scholar
Akin, D. E., Borneman, W. S. & Windham, W. R. (1988). Rumen fungi: morphological types from Georgia cattle and the attack on forage cell walls. BioSystems 21, 385391.CrossRefGoogle ScholarPubMed
Akin, D. E., Gordon, G. L. R. & Hogan, J. P. (1983). Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Applied and Environmental Microbiology 46, 738748.Google ScholarPubMed
Akin, D. E. & Hogan, J. P. (1983). Sulfur fertilization and rumen microbial degradation of cell walls in Digitaria pentzii (Stent). Crop Science 23, 851858.CrossRefGoogle Scholar
Akin, D. E., Lyon, C. E., Windham, W. R. & Rigsby, L. L. (1989). Physical degradation of lignified stem tissues by ruminal fungi. Applied and Environmental Microbiology 55, 611616.Google ScholarPubMed
Akin, D. E. & Rigsby, L. L. (1985). Influence of phenolic acids on rumen fungi. Agronomy Journal 77, 180182.Google Scholar
Akin, D. E. & Rigsby, L. L. (1987). Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen. Applied and Environmental Microbiology 53, 19871995.Google ScholarPubMed
Akin, D. E. & Windham, W. R. (1989). Influence of diet on rumen fungi. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 7581. [Nolan, J. A.Leng, R. A. and Demeyer, D. L. editors]. Armidale, Australia: Penambul Books.Google Scholar
Ali, B. R. S., Zhou, L., Graves, F. M., Freedman, R. B., Black, G. W., Gilbert, H. J. & Hazlewood, G. P. (1995). Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiology Letters 125, 1521.CrossRefGoogle ScholarPubMed
Arakaki, C., Mitsumori, M., Itabashi, H., Shirasaka, S. & Minato, H. (1994). Influence of the presence of protozoa on the rumen microbial population of cattle. Journal of General and Applied Microbiology 40, 215226.CrossRefGoogle Scholar
Argyle, J. L. & Douglas, L. (1989). Chitin as a rumen fungal marker. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 289290 [Nolan, J. A.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Asao, N., Ushida, K. & Kojima, Y. (1993). Proteolytic activity of rumen fungi belonging to the genera Neocallimastix and Piromyces. Letters in Applied Microbiology 16, 247250.CrossRefGoogle Scholar
Baker, S. K., Dehority, B. A., Chamberlain, N. L. & Purser, D. B. (1995). Inability of protozoa from the kangaroo forestomach to establish in the rumen of sheep. Annales de Zootechnie 44 (Suppl.), 143.CrossRefGoogle Scholar
Barr, D. J. S., Kudo, H., Jackober, K. D. & Cheng, K.-J. (1989). Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen. nov., sp. nov. Canadian Journal of Botany 67, 28152824.CrossRefGoogle Scholar
Bauchop, T. (1979). Rumen anaerobic fungi of sheep and cattle. Applied and Environmental Microbiology 38, 148158.Google Scholar
Bauchop, T. (1989). Biology of gut anaerobic fungi. BioSystems 23, 5364.CrossRefGoogle ScholarPubMed
Beharka, A. A. & Nagaraja, T. G. (1993). Effect of Aspergillus oryzae fermentation extract (Amaferm©) on in vitro fiber degradation. Journal of Dairy Science 76, 812818.CrossRefGoogle Scholar
Bernalier, A., Bogaert, C., Fonty, G. & Jouany, J.-P. (1989). Effect of ionophore antibiotics on rumen anaerobic fungi. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 273275 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Bernalier, A., Fonty, G., Bonnemoy, F. & Gouet, P. (1993 a). Effect of Eubacterium limosum,a ruminal hydrogenotrophic bacterium, on the degradation and fermentation of cellulose by three species of rumen anaerobic fungi. Reproduction Nutrition Development 33, 577584.CrossRefGoogle Scholar
Bernalier, A., Fonty, G., Bonnemoy, F. & Gouet, P. (1993 a). Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. Journal of General Microbiology 139, 873880.CrossRefGoogle ScholarPubMed
Bernalier, A., Fonty, G. & Gouet, P. (1991). Cellulose degradation by two rumen anaerobic fungi in monoculture or in coculture with rumen bacteria. Animal Feed Science and Technology 32, 131136.CrossRefGoogle Scholar
Bernard-Vailhé, M. A., Besle, J. M. & Doré, J. (1995). Transformation of C14-lignin-labeled cell walls of wheat by Syntrophococcus sucromutans, Eubacterium oxidoreducens, and Neocallimastix frontalis. Applied and Environmental Microbiology 61, 379381.Google ScholarPubMed
Bird, S. H. (1989). Production from ciliate-free ruminants. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 233246 [Nolan, J. V., Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Bird, S. H. (1991). Role of protozoa in relation to the nutrition of the host animal. In Recent Advances in the Nutrition of Herbivores, pp. 171180 [Ho, Y. W.Wong, H. K.Abdullah, N. and Tajuddin, Z. A., editors]. Serdang, Malaysia: Malaysian Society of Animal Production.Google Scholar
Black, G. W., Hazlewood, G. P., Xue, G.-P., Orpin, C. G. & Gilbert, H. J. (1994). Xylanase B from Neocallimastix patricianun contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochemical Journal 299, 381387.CrossRefGoogle ScholarPubMed
Bonnemoy, F., Fonty, G., Michel, V. & Gouet, P. (1993). Effect of anaerobic fungi on the ruminal proteolysis in gnotobiotic lambs. Reproduction Nutrition Development 33, 551555.CrossRefGoogle ScholarPubMed
Borneman, W. S. & Akin, D. E. (1990). Lignocellulose degradation by rumen fungi and bacteria: ultrastructure and cell wall degrading enzymes. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants (Tri-National Workshop), pp. 325339 [Akin, D. E.Ljungdahl, L. G.Wilson, J. R. and Harris, P. J. editors]. New York: Elsevier.Google Scholar
Borneman, W. S., Akin, D. E. & Ljungdahl, L. G. (1989). Fermentation products and plant cell wall-degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Applied and Environmental Microbiology 55, 10661073.Google ScholarPubMed
Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E. & Ljungdahl, L. G. (1990). Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation. Applied Microbiology and Biotechnology 33, 345351.CrossRefGoogle Scholar
Borneman, W. S., Ljungdahl, L. G., Hartley, R. D. & Akin, D. E. (1992). Purification and partial characterization of two feruloyl esterases from the anaerobic fungus Neocallimastix strain MC-2. Applied and Environmental Microbiology 58, 37623766.Google ScholarPubMed
Bowman, B. H., Taylor, J. W., Brownlee, A. G., Lee, J., Lu, S. D. & White, T. J. (1992). Molecular evolution of the fungi. Relationships of the Basidiomycetes, Ascomycetes, and Chytridiomycetes. Molecular Biology and Evolution 9, 285296.Google ScholarPubMed
Breton, A., Bernalier, A., Bonnemoy, F., Fonty, G., Gaillard, B. & Gouet, P. (1989). Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus: Neocallimastix joyonii. FEMS Microbiology Letters 58, 309314.CrossRefGoogle Scholar
Breton, A., Bernalier, A., Dusser, M., Fonty, G., Gaillard-Martinie, B. & Guillot, J. (1990). Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiology Letters 70, 177182.Google Scholar
Breton, A., Confesson, I., Dusser, M. & Gaillard-Martinie, B. (1994). [Comparison of the fungal populations in the rumen, duodenum and faeces of sheep.] Annales de Zootechnie 43, 262.CrossRefGoogle Scholar
Breton, A., Dusser, M., Gaillard-Martinie, B., Guillot, J. & Millet, L. (1992). [Characterization of rumen polycentric fungi observed in vivo.] Annules de Zootechni 41 7980.CrossRefGoogle Scholar
Breton, A., Gaillard-Martinie, B., Gerbi, C., De Segura, B. G., Durand, R. & Kherratia, B. (1995). Location by fluorescence microscopy of glycosidases and a xylanase in the anaerobic gut fungi Caecomyces communis, Neocallimastix frontalis, and Piromyces rhizinflata. Current Microbiology 31, 224227.CrossRefGoogle Scholar
Brownlee, A. G. (1994). The nucleic acids of anaerobic fungi. In Anaerobic Fungi, pp. 241256 [Mountfort, D. O. and Orpin, C. G. editors]. New York: Marcel Dekker.Google Scholar
Brownlee, A. G., Rintoul, A. J., Gordon, G. L. R. & Phillips, M. W. (1996). Monitoring rumen fungal populations with PCR and DNA probes. Microbiology Australia 17, A38 (Abstr).Google Scholar
Calderon-Cortes, J. F., Elliott, R. & Ford, C. W. (1989). Influence of rumen fungi on the nutrition of sheep fed forage diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 181187 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Cann, I. K. O., Kobayashi, Y., Onoda, A., Wakita, M. & Hoshino, S. (1993 a). Effects of some ionophore antibiotics and polyoxins on the growth of anaerobic rumen fungi. Journal of Applied Bacteriology 74, 127133.CrossRefGoogle ScholarPubMed
Cann, I. K. O., Kobayashi, Y., Wakita, M. & Hoshino, S. (1993 b). Fungal supression and its effects on some ruminal parameters. Animal Science and Technology 64, 233238.Google Scholar
Cann, I. K. O., Kobayashi, Y., Wakita, M. & Hoshino, S. (1994). Effects of three chemical treatments on in vitro fermentation of rice straw by mixed rumen microbes in the presence or absence of anaerobic rumen fungi. Reproduction Nutrition Development 34, 4756.CrossRefGoogle ScholarPubMed
chaucheyras, F., Fonty, G., Bertin, G. & Gouet, P. (1995). Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus Neocallimastix frontalis MCH3. Current Microbiology 31, 201205.CrossRefGoogle ScholarPubMed
Davies, D. R., Theodorou, M. K., Lawrence, M. I. G. & Trinci, A. P. J. (1993). Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. Jounurl of General Microbiology 139, 13951400.CrossRefGoogle ScholarPubMed
Denman, S., Xue, G.-P. & Patel, B. (1996). Characterization of a Neocallimasrix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II. Applied and Environmental Microbiology 62, 18891896.Google ScholarPubMed
Dijkerman, R., Ledeboer, J., Op den Camp, H. J. M., Prins, R. A. & Van der Drift, C. (1997 a). The anaerobic fungus Neocallimastix sp. strain L2 - growth and production of (hemi)cellulolytic enzymes on a range of carbohydrate substrates. Current Microbiology 34, 9196.CrossRefGoogle Scholar
Dijkerman, R., Op den Camp, H. J. M. & Van der Drift, C. (1996 a). Cultivation of anaerobic fungi in a 10–1 fermenter system for the production of (hemi)-cellulolytic enzymes. Applied Microbiology and Biotechnology 46, 8591.CrossRefGoogle Scholar
Dijkerman, R., Op den Camp, H. J. M., Van der Drift, C. & Vogels, G. D. (1997 b). The role of the cellulolytic high molecular mass (HMM) complex of the anaerobic fungus Piromyces sp. strain E2 in the hydrolysis of microcrystal-line cellulose. Archives of Microbiology 167, 137142.CrossRefGoogle Scholar
Dijkerman, R., Vervuren, M. B. F., Op den Camp, H. J. M. & Van der Drift, C. (1996 b). Adsorption characteristics of cellulolytic enzymes from the anaerobic fungus Piromyces sp. strain E2 on microcrystalline cellulose. Applied and Environmental Microbiology 62, 2025.Google ScholarPubMed
Doré, J., Brownlee, A. G., Millet, L., Virlogeux, I., Saigne, M., Fonty, G. & Gouet, P. (1993). Ribosomal DNA-targeted hybridization probes for the detection, identification and quantitation of anaerobic rumen fungi. Proceedings of the Nutrition Society 52, 176A.Google Scholar
Doné, J. & Stahl, D. A. (1991). Phylogeny of anaerobic rumen chytridiomycetes inferred from small subunit ribosomal RNA sequence comparisons. Canadian Journal of Botany 69, 1964–1971.Google Scholar
Elliott, R., Ash, A. J., Calderon-Cortes, F., Norton, B. W. & Bauchop, T. (1987). The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. Journal of Agricultural Science 109, 1317.CrossRefGoogle Scholar
Faichney, G. J., Brownlee, A. G., Gordon, G. L. R., Phillips, M. W. & Welch, R. J. (1991). Contribution of protozoa and anaerobic fungi to digesta N in sheep given a pelleted hay/grain diet. Proceedings of the Nutrition Society of Australia 16, 209.Google Scholar
Faichney, G. J., Poncet, C., Lassalas, B., Jouany, J. P., Millet, L.Doré, J. & Brownlee, A. G. (1997). Effects of concentrates in a hay diet on the contribution of anaerobic fungi, protozoa and bacteria to nitrogen in rumen and duodenal digesta in sheep. Animal Feed Science and Technology 64, 193213.CrossRefGoogle Scholar
Fanutti, C., Ponyi, T., Black, G. W., Hazlewood, G. P. & Gilbert, H. J. (1995). The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. Journul of Biological Chemistry 270, 2931429322.CrossRefGoogle ScholarPubMed
Fonty, G. & Joblin, K. N. (1991). Rumen anaerobic fungi: their role and interaction with other rumen microorganisms in relation to fibre digestion. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 655680 [Tsuda, TSasaki, Y. and Kawashima, R., editors]. San Diego: Academic Press.CrossRefGoogle Scholar
Ford, C. W., Elliott, R. & Maynard, P. J. (1987). The effect of chlorite delignification on digestibility of some grass forages and on intake and rumen microbial activity in sheep fed barley straw. Journal of Agricultural Science 108, 129136.CrossRefGoogle Scholar
Garcia-Campayo, V., McCrae, S. I. & Wood, T. M. (1994). Hydrolysis of oligosaccharides of the β-(1←4)-linked D-xylose series by an endo(1←4)β-D-xyhnase from the anaerobic rumen fungus Neocallimastix frontalis. World Journal of Microbiology & Biotechnology 10, 6468.CrossRefGoogle ScholarPubMed
Gay, L. (1991). Chitin content and chitin synthase activity as indicators of the growth of three different anaerobic rumen fungi. FEMS Microbiology Letters 80, 99102.CrossRefGoogle Scholar
Gerbi, C., Bata, J., Breton, A. & Prensier, G. (1996 a). Glycoside and polysaccharide hydrolase activity of the rumen anaerobic fungus Caecomyces communis (Sphaeromoms communis sensu Orpin) at early and final stages of the developmental cycle. Current Microbiology 32, 256259.CrossRefGoogle ScholarPubMed
Gerbi, C., Bata, J., Breton, A. & Prensier, G. (1996 b). Polysaccharide hydrolase production by the rumen fungus Caecomyces communis. Research in Microbiology 147, 363370.CrossRefGoogle ScholarPubMed
Gordon, G. L. R. (1985). The potential for manipulation of rumen fungi. In Biotechnology and Recombinant DNA Technology in the Animal Production Industries. Reviews in Rural Science, volume 6, pp. 124128 [Leng, R. A.Barker, J. S.Adams, F. and Hutchinson, K. J., editors]. Armidale, Australia: University of New England.Google Scholar
Gordon, G. L. R. (1987). Degradation of 14C-labelled lignocelluloses by rumen anaerobic fungi. In Herbivore Nutrition Research, pp. 115116 [Rose, M. editor] Brisbane: Australian Society for Animal Production.Google Scholar
Gordon, G. L. R. (1990). Selection of anaerobic fungi for better fiber degradation in the rumen. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 301309 [Akin, D. E.Ljungdahl, L. G.Wilson, J. R. and Harris, P. J. editors]. New York: Elsevier.Google Scholar
Gordon, G. L. R., Akin, D. E. & Hogan, J. P. (1984). Rumen anaerobic fungi in sheep fed methionine supplemented Digitaria pentzii hay. In Ruminant Physiology—Concepts and Consequences, p. 174 [Baker, S. K.Gawthorne, J. M.Mackintosh, J. B. and Purser, D. B. editors]. Perth: University of Western Australia.Google Scholar
Gordon, G. L. R. & Ashes, J. R. (1984). In vitro digestion of wheat straw by different rumen anaerobic fungi. Canadian Journul of Animal Science 64 (Suppl.), 156–157.CrossRefGoogle Scholar
Gordon, G. L. R., Gulati, S. K. & Ashes, J. R. (1983). Influence of low-sulphur straw on anaerobic fungal numbers in a sheep rumen. Proceedings of the Nutrition Sociery of Australia 8, 188.Google Scholar
Gordon, G. L. R., McSweeney, C. S. & Phillips, M. W. (1995b). An important role for ruminal anaerobic fungi in the voluntary intake of poor quality forages by ruminants. In Rumen Ecology Research Planning. Proceedings of a Workshop held at ILRI, Addis Ababa, Ethiopia, pp. 91101 [Wallace, R. J. and Lahlou-Kassi, A. editors]. Nairobi, Kenya: International Livestock Research Institute.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1989 a). Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine nunen. Applied and Environmental Microbiology 55, 17031710.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1989 b). Comparative fermentation properties of anaerobic fungi from the rumen. In The Roles of Protozoa and Fungi in Ruminunt Digestion, pp. 121137 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1989 c). Anaerobic fungi are not always eliminated from the rumen by short-term treatment with monensin. Conference on Rumen Function, Chicago 20, 11.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1991). Pectin degradation by some ruminal anaerobic fungi. In Proceedings of the Third International Symposium on the Nutrition of Herbivorves, p. 27. [Zahari, M. W.Tajuddin, Z. A.Abdullah, N. and Wong, H. K. editors]. Serdang, Malaysia: Malaysian Society for Animal Production.Google Scholar
Gordon, G. L. R. & Phillips, M. W. (1992). Extracellular pectin lyase produced by Neocallimusfix sp. LMl, a rumen anaerobic fungus. Letters in Applied Microbiology 15, 113115.CrossRefGoogle Scholar
Gordon, G. L. R. & Phillips, M. W. (1993). Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Leners in Applied Microbiology 17, 220&223.CrossRefGoogle Scholar
Gordon, G. L. R., Phillips, M. W., Brownlee, A. G., Rintoul, A. J. & White, S. W. (1996 a). Dosing of anaerobic fungi from kangaroos into sheep. Microbiology Australia 17, A36 (Abstr.).Google Scholar
Gordon, G. L. R., Wong, H. K. & Phillips, M. W. (1995 b). In vitro degradation of [14C]lignocellulose by polycentric and monocentric ruminal anaerobic fungi is inhibited differently by phenolic monomers. Annules de Zootechnie 44 (Suppl.), 152.CrossRefGoogle Scholar
Grenet, E., Bemalier, A., Jamot, J. & Fonty, G. (1993). Degradation of untreated and anhydrous ammonia-treated wheat straw by two strains of rumen anaerobic fungi. Annales de Zoofechnie 42, 180.CrossRefGoogle Scholar
Grenet, E., Breton, A., Barry, P. & Fonty, G. (1989 a). Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Animal Feed Science and Technology 26, 5570.CrossRefGoogle Scholar
Grenet, E., Fonty, G. & Barry, P. (1989 b). SEM study of the degradation of maize and lucerne stems in the rumen of gnotobiotic lambs harbouring only fungi as cellulolytic micro-organisms. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 264267 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Grenet, E., Fonty, G., Jamot, J. & Bonnemoy, F. (1989 a). Influence of diet and monensin on development of anaerobic fungi in the rumen, duodenum, cecum. and feces of cows. Applied and Environmental Microbiology 55, 23602364.Google ScholarPubMed
Gulati, S. K., Ashes, J. R., Connell, P. J. & Gordon, G. L. R. (1989 a). Amino acid profiles of anaerobic rumen fungi. Proceedings of the Nutrition Society of Australia 14, 134.Google Scholar
Gulati, S. K., Ashes, J. R. & Gordon, G. L. R. (1988). Digestibility of sulphur amino acids in rumen fungal species. Proceedings of the Nutrition Society of Australia 13, 133.Google Scholar
Gulati, S. K., Ashes, J. R. & Gordon, G. L. R. (1990). Comparative digestibility of sulphur amino acids in rumen bacteria and fungal proteins by sheep. Proceedings of the Nutrition Society of Australia 15, 128131.Google Scholar
Gulati, S. K., Ashes, J. R., Gordon, G. L. R., Connell, P. J. & Rogers, P. L. (1989 b). Nutritional availability of amino acids from the rumen anaerobic fungus Neocallimustix sp. LMI in sheep. Journal of Agricultural Science 113, 383387.CrossRefGoogle Scholar
Gulati, S. K., Ashes, J. R., Gordon, G. L. R. & Phillips, M. W. (1985). Possible contribution of rumen fungi to fibre digestion in sheep. Proceedings of the Nutrition Society of Australia 10, 96.Google Scholar
Gutierrez, Ch. L., Contreras-Lara, D., Ramirez, C. J. T., Sanchez, F. & Gonzalez, C. H. (1996). Sulphur supplementation improves rumen activity. Feed Mix 4, 1819.Google Scholar
Harper, E. G., Welch, R. P., Contreras-Lara, D., Chang, J. S. & Calza, R. E. (1996). The effect of Aspergillus oryzae fermentation extract on the anaerobic fungi Neocallimastix frontalis EB 188, Piromyces communis DC 193 and Orpinomyces SP. RW 206: generalized effects and component analysis. Applied Microbiology and Biotechnology 45, 817821.CrossRefGoogle Scholar
Heath, I. B., Bauchop, T. & Skipp, R. A. (1983). Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Canadian Journal of Botany 61, 295307.CrossRefGoogle Scholar
Hillaire, M. C. & Jouany, J.-P. (1989). Effects of rumen anaerobic fungi on the digestion of wheat straw and the end products of microbial metabolism: studies in a semi-continuous in vitro system. In The Roles of Protozoa and Fungi in Ruminunt Digestion, pp. 269271 ]Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Hillaire, M. C., Jouany, J.-P. & Fonty, G. (1990). Wheat straw degradation, in Rusitec, in the presence or absence of rumen anaerobic fungi. Proceedings of the Nutrition Society 49, 127A.Google Scholar
Ho, Y. W., Abdullah, N. & Jalaludin, S. (1988). Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. Journal of General Microbiology 134, 177182.Google Scholar
Ho, Y. W., Abdullah, N. & Jalaludin, S. (1991). Fungal colonisation of rice straw and palm press fibre in the rumen of cattle and buffalo. Animal Feed Science and Technology 34, 311321.CrossRefGoogle Scholar
Ho, Y. W. & Barr, D. J. S. (1995). Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87, 655677.CrossRefGoogle Scholar
Ho, Y. W. & Bauchop, T. (1991). Morphology of three polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures. Journal of General Microbiology 137, 213217.CrossRefGoogle ScholarPubMed
Ho, Y. W., Khoo, I. Y. S., Tan, S. G., Abdullah, N., Jalaludin, S. & Kudo, H. (1994). Isozyme analysis of anaerobic rumen fungi and their relationship to aerobic chytrids. Microbiology UK 140, 14951504.CrossRefGoogle ScholarPubMed
Ho, Y. W., Wong, M. V. L., Abdullah, N., Kudo, H. & Jalaludin, S. (1996). Fermentation activities of some new species of anaerobic rumen fungi from Malaysia. Journal of General and Applied Microbiology 42, 5159.CrossRefGoogle Scholar
Hodrová, B., Kopečný, J. & Petr, O. (1995). Interaction of the rumen fungus Orpinomyces joyonii with Megasphaera elsdenii and Eubacterium limosum. Letters in Applied Microbiology 21, 3437.CrossRefGoogle ScholarPubMed
Hsu, J. T., Fahey, G. C., Merchen, N. R. & Mackie, R. I. (1991). Effects of defaunation and various nitrogen supplementation regimens on microbial numbers and activity in the rumen of sheep. Journal of Animal Science 69, 12791289.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science 76, 38513863.CrossRefGoogle ScholarPubMed
Joblin, K. N. (1981). Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Applied and Environmental Microbiology 42, 11191122.Google ScholarPubMed
Joblin, K. N. (1990). Bacterial and protozoal interactions with ruminal fungi. In Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants, pp. 311324 ]Akin, D. E.Ljungdahl, L. G.Wilson, J. R. and Harris, P. J. editors]. New York: Elsevier.Google Scholar
Joblin, K. N. & Naylor, G. E. (1993). Inhibition of the rumen anaerobic fungus Neocallimastix frontalis by fermentation products. Letters in Applied Microbiology 16, 254256.CrossRefGoogle Scholar
Joblin, K. N. & Naylor, G. E. (1996). Inhibition of the ruminal bacterium Ruminococcus flavefaciens by ruminal fungi. Annales de Zootechnie 45 (Suppl.), 289.CrossRefGoogle Scholar
Joblin, K. N., Naylor, G. E. & Williams, A. G. (1990). Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Applied and Environmental Microbiology 56, 22872295.Google ScholarPubMed
Joblin, K. N. & Williams, A. G. (1991). Effect of cocultivation of ruminal chytrid fungi with Methanobrevibacter smithii on lucerne stem degradation and extracellular fungal enzyme activities. Letters in Applied Microbiology 12, 121124.CrossRefGoogle Scholar
Jouany, J.-P. (1996). Effect of rumen protozoa on nitrogen utilization by ruminants. Journal of Nutrition 126, S1335S1346.CrossRefGoogle ScholarPubMed
Kemp, P., Jordan, D. J. & Orpin, C. G. (1985). The free- and protein-amino acids of the rumen phycomycete fungi Neocallimastix frontalis and Piromonas communis. Journal of Agricultural Science 105, 523526.CrossRefGoogle Scholar
Kopečný, J. & Hodrová, B. (1995). Pectinolytic enzymes of anaerobic fungi. Letters in Applied Microbiology 20, 312316.CrossRefGoogle ScholarPubMed
Kopečný, J., Hodrová, B. & Stewart, C. S. (1996). The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi. Letters in Applied Microbiology 23, 199202.CrossRefGoogle ScholarPubMed
Kostyukovsky, V., Inamoto, T., Ando, T., Nakai, Y. & Ogimoto, K. (1995). Degradation of hay by rumen fungi in artificial rumen (Rusitec). Journal of General and Applied Microbiology 41, 8386.CrossRefGoogle Scholar
Kostyukovsky, V. A., Okunev, O. N. & Tarakanov, B. V. (1991). Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo. Journal of General Microbiology 137, 17591764.CrossRefGoogle ScholarPubMed
Li, J. & Heath, I. B. (1992). The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota. I. Cladistic analysis of rRNA sequences. Canadian. Journal of Botany 70, 17381746.CrossRefGoogle Scholar
Li, J. & Heath, I. B. (1993). Chytridiomycetous gut fungi, oft overlooked contributors to herbivore digestion. Canadian. Journal of Microbiology 39, 10031013.CrossRefGoogle ScholarPubMed
Li, X.-L., Chen, H. & Ljungdahl, L. G. (1997). Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Applied and Environmental Microbiology 63, 628635.Google ScholarPubMed
Lowe, S. E., Griffith, G. G., Milne, A., Theodorou, M. K. & Trinci, A. P. J. (1987 a). The life cycle and growth kinetics of an anaerobic rumen fungus. Journal of General Microbiology 133, 18151827.Google Scholar
Lowe, S. E., Theodorou, M. K. & Trinci, A. P. J. (1987 b). Isolation of anaerobic fungi from saliva and faeces of sheep. Journal of General Microbiology 133, 18291834.Google Scholar
Lowe, S. E., Theodorou, M. K. & Trinci, A. P. J. (1987 c). Growth and fermentation of an anaerobic rumen fungus on various carbon sources and effect of temperature on development. Applied and Environmental Microbiology 53, 12101215.Google ScholarPubMed
Lowe, S. E., Theodorou, M. K. & Trinci, A. P. J. (1987 d). Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Applied and Environmental Microbiology 53, 12161223.Google ScholarPubMed
Lowry, J. B., Sumpter, E. A., McSweeney, C. S., Schlink, A. C. & Bowden, B. (1993). Phenolic acids in the fibre of some tropical grasses, effect on feed quality, and their metabolism by sheep. Australian Journal of Agricultural Research 44, 11231133.CrossRefGoogle Scholar
McAllister, T. A., Bae, H. D., Yanke, L. J., Cheng, K.-J. & Muir, A. (1994). Effect of condensed tannins from birdsfoot trefoil on endoglucanase activity and the digestion of cellulose filter paper by ruminal fungi. Canadian Journal of Microbiology 40, 298305.CrossRefGoogle ScholarPubMed
McAllister, T. A., Dong, Y., Yanke, L. J., Bae, H. D., Cheng, K.-J. & Costerton, J. W. (1993). Cereal grain digestion by selected strains of ruminal fungi. Canadian Journal of Microbiology 39, 367376.CrossRefGoogle ScholarPubMed
Mackie, R. I. (1996). The use of oligonucleotide probes to study the ecology of ruminal microbial populations. Annales de Zootechnie 45 (Suppl.), 281285.CrossRefGoogle Scholar
McSweeney, C. S., Dulieu, A., Katayama, Y. & Lowry, J. B. (1994). Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum. Applied and Environmental Microbiology 60, 29852989.Google ScholarPubMed
Marounek, M. & Hodrová, B. (1989). Susceptibility and resistance of anaerobic rumen fungi to antimicrobial feed additives. Letters in Applied Microbiology 9, 173175.CrossRefGoogle Scholar
Martin, S. A. & Nisbet, D. J. (1992). Effect of direct-fed microbials on rumen microbial fermentation. Journal of Dairy Science 75, 17361744.CrossRefGoogle ScholarPubMed
Marvin-Sikkema, F. D., Gomes, T. M. P., Grivet, J. P., Gottschal, J. C. & Prins, R. A. (1993 a). Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Archives of Microbiology 160, 388396.CrossRefGoogle ScholarPubMed
Marvin-Sikkema, F. D., Roes, E., Kraak, M. N., Gottschal, J. C. & Prins, R. A. (1990). Influence of metronidazole. CO, CO2, and methanogens on the fermentative metabolism of the anaerobic fungus Neocallimastix sp. strain L2. Applied and Environmental Microbiology 59, 26782683.Google Scholar
Marvin-Sikkema, F. D., Richardson, A. J., Stewart, C. S., Gottschal, J. C. & Prins, R. A. (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Applied and Environmental Microbiology 56, 37933797.Google ScholarPubMed
Mathieu, F., Jouany, J.-P., Senaud, J., Bohatier, J., Bertin, G. & Mercier, M. (1996). The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep: protozoal and probiotic interactions. Reproduction Nutrition Development 36, 271287.CrossRefGoogle ScholarPubMed
Michel, V., Fonty, G., Millet, L., Bonnemoy, F. & Gouet, P. (1993). In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiology Lerrers 110, 59.CrossRefGoogle ScholarPubMed
Millard, P., Gordon, A. H., Richardson, A. J. & Chesson, A. (1987). Reduced ruminal degradation of ryegrass caused by sulphur limitation. Journal of the Science of Food and Agriculture 40, 305314.CrossRefGoogle Scholar
Millet, L., Fonty, G. & Gouet, P. (1996). Use of 18S-rRNA-targeted oligonucleotide probes for detection and quantification of anaerobic fungi in the rumen of different animals. Annales de Zootechnie 45 (Suppl.), 286.CrossRefGoogle Scholar
Morgavi, D. P., Onodera, R. & Nagasawa, T. (1993). In vitro metabolism of chitin and protein from ruminal fungi by ruminal protozoa. Animal Science and Technology 64, 584592.Google Scholar
Morgavi, D. P., Sakurada, M., Mizokami, M., Tomita, Y. & Onodera, R. (1994 b). Effects of ruminal protozoa on cellulose degradation and the growth of an anaerobic ruminal fungus, Piromyces sp. strain OTSI, in vitro. Applied and Environmental Microbiology 60, 37183723.Google Scholar
Morgavi, D. P., Sakurada, M., Tomita, Y. & Onodera, R. (1994 a). Presence in rumen bacterial and protozoal populations of enzymes capable of degrading fungal cell walls. Microbiology UK 140, 631636.CrossRefGoogle ScholarPubMed
Morrison, M., Murray, R. M. & Boniface, A. N. (1990). Nutrient metabolism and rumen micro-organisms in sheep fed a poor-quality tropical grass hay supplemented with sulphate. Journal of Agriculrural Science 115, 269275.CrossRefGoogle Scholar
Morvan, B., Rieu-Lesme, F., Fonty, G. & Gouet, P. (1996). In virro interactions between rumen H2-producing cellulolytic microorganisms and H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2, 175180.CrossRefGoogle Scholar
Mountfort, D. O. (1994). Regulatory constraints in the degradation and fermentation of carbohydrate by anaerobic fungi. In Anaerobic Fungi, pp. 147168 [Mountfort, D. O. and Orpin, C. G. editors]. New York: Marcel Dekker.Google Scholar
Mountfort, D. O. & Orpin, C. G. (Eds) (1994). Anaerobic Fungi: Biology, Ecology and Function. New York: Marcel Dekker.Google Scholar
Munn, E. A. (1994). The ultrastructure of anaerobic fungi. In Anaerobic Fungi, pp. 47105. [Mountfort, D. O. and Orpin, C. G., editors]. New York: Marcel Dekker.Google Scholar
Newbold, C. J. (1996). Probiotics for ruminants. Annales de Zootechnie 45 (Suppl.), 329335.CrossRefGoogle Scholar
Newbold, C. J., Brock, R. & Wallace, R. J. (1992). The effect of Aspergillus oryzae fermentation extract on the growth of fungi and ciliate protozoa in the rumen. Letters in Applied Microbiology 15, 109112.CrossRefGoogle Scholar
Newbold, C. J. & Hillman, K. (1990). The effect of ciliate protozoa on the turnover of bacterial and fungal protein in the rumen of sheep. Letters in Applied Microbiology 11, 100102.CrossRefGoogle Scholar
Newbold, C. J., Wallace, R. J., Watt, N. D. & Richardson, A. J. (1988). Effect of the novel ionophore tetronasin (ICI 139603) on ruminal microorganisms. Applied and Environmental Microbiology 54, 544547.Google ScholarPubMed
O'Fallon, J. V., Wright, R. W. & Calza, R. E. (1991). Glucose metabolic pathways in the anaerobic rumen fungus Neocallimasrix frontalis EB188. Biochemical Journal 214, 595599.CrossRefGoogle Scholar
Obispo, N. E. & Dehority, B. A. (1992). A most probable number method for enumeration of rumen fungi with studies on factors affecting their concentration in the rumen. Journal of Microbiological Methods 16, 259270.CrossRefGoogle Scholar
Odenyo, A. A., Osuji, P. O., Karanfil, O. & Adinew, K. (1997). Microbiological evaluation of Acacia angustissima as a protein supplement for sheep. Animal Feed Science and Technology 65, 99112.CrossRefGoogle Scholar
Ogimoto, K. & Imai, S. (1981). Atlas of Rumen Microbiology. Tokyo: Japan Scientific Societies Press.Google Scholar
Onoda, A., Kobayashi, U., Wakita, M. & Hoshino, S. (1993). Isolation of anaerobic phycomycete fungi from some herbivores and their chemical composition. Animal Science and Technology 64, 115120.Google Scholar
Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimasrix frontalis. Journal of General Microbiology 91, 249262.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1976). Studies on the rumen flagellate Sphaeromonas communis. Journal of General Microbiology 94, 270280.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1977 a). Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. Journal of General Microbiology 98, 423430.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1977 b). The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. Journal of General Microbiology 99, 107117.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1977 c). The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. Journal of General Microbiology 99, 215218.CrossRefGoogle Scholar
Orpin, C. G. (1977 d). On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. Journal of General Microbiology 101, 181189.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1977 e). Studies on the defaunation of the ovine rumen using dioctyl sodium sulphosuccinate. Journal of Applied Bacteriology 43, 309318.CrossRefGoogle Scholar
Orpin, C. G. (1988). Nutrition and biochemistry of anaerobic chytridiomycetes. BioSystems 21, 365370.CrossRefGoogle ScholarPubMed
Orpin, C. G. (1989). Ecology of rumen anaerobic fungi in relation to the nutrition of the host animal. In The Roles of Prorozoa and Fungi in Ruminant Digestion, pp. 2937 [Nolan, J. V.Leng, R. A. and Demeyer, D. I editors]. Armidale, Australia: Penambul books.Google Scholar
Orpin, G. (1994). Anaerobic fungi-taxonomy, biology, and distribution in nature. In Anaerobic Fungi, pp. 145 [Mountfort, D. O. and Orpin, C. G. editors]. New York: Marcel Dekker.Google Scholar
Orpin, C. G. & Bountiff, L. (1978). Zoospore chemotaxis in the rumen phycomycete Neocallimastix fronralis. Journal of General Microbiology 104, 113122.CrossRefGoogle Scholar
Orpin, C. G. & Greenwood, Y. (1986). Nutritional and germination requirements of the rumen chytridiomycete Neocallimastix patriciarum. Transactions of the Brirish Mycological Society 86, 103109.CrossRefGoogle Scholar
Orpin, C. G., Greenwood, Y., Hall, F. J. & Paterson, I. W. (1985). The rumen microbiology of seaweed digestion in Orkney sheep. Journal of Applied Bacteriology 58, 585596.CrossRefGoogle ScholarPubMed
Orpin, C. G. & Ho, Y. W. (1991). Ecology and function of the anaerobic rumen fungi. In Recent Advances in the Nutrition of Herbivores, pp. 163170 [Ho, Y. W.Wong, H. K.Abdullah, N. and Tajuddin, Z. A. editors]. Serdang, Malaysia: Malaysian Society of Animal Production.Google Scholar
Orpin, C. G. & Letcher, A. J. (1984). Effect of absence of ciliate protozoa on rumen fluid volume, flow rate and bacterial populations in sheep. Animal Feed Science and Technology 10, 145153.CrossRefGoogle Scholar
Phillips, M. W. (1989). Unusual rumen fungi isolated from northern Australian cattle and water buffalo. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 247249 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Phillips, M. W. & Gordon, G. L. R. (1988). Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. BioSystems 21, 377383.CrossRefGoogle ScholarPubMed
Phillips, M. W. & Gordon, G. L. R. (1989). Growth characteristics on cellobiose of three different anaerobic fungi isolated from the ovine rumen. Applied and Environmental Microbiology 55, 16951702.Google ScholarPubMed
Phillips, M. W. & Gordon, G. L. R. (1991). Growth responses to reduced sulphur compounds of a ruminal fungus, Neocallimastix sp. LMI. In Proceedings of the Third International Symposium on the Nutrition of Herbivores, p. 26 [Zahari, M. W.Tajuddin, Z. A.Abdullah, N. and Wong, H. K. editors]. Serdang, Malaysia: Malaysian Socity for Animal Production.Google Scholar
Phillips, M. W. & Gordon, G. L. R. (1992). Fungistatic and fungicidal effects of the ionophores monensin and tetronasin on the rumen fungus Neocallimastix sp. LMI. Letters in Applied Microbiology 15, 116119.CrossRefGoogle Scholar
Phillips, M. W. & Gordon, G. L. R. (1995 a). Carbohydrate fermentation by three species of polycentric ruminal fungi from cattle and water buffalo in tropical Australia. Anaerobe 1. 4147.CrossRefGoogle ScholarPubMed
Phillips, M. W. & Gordon, G. L. R. (1995 b). Colonisation of the sheep rumen with polycentric anaerobic fungi isolated from cattle. Annales de Zootechnie 44 (Suppl.), 141.CrossRefGoogle Scholar
Rees, E. M. R., Lloyd, D. & Williams, A. G. (1995). The effects of co-cultivation with the acetogen Acetitomaculum ruminis on the fermentative metabolism of the rumen fungi Neocallimastix patriciarum and Neocallimastix sp. strain L2. FEMS Microbiology Letters 133, 175180.CrossRefGoogle ScholarPubMed
Roger, V., Bernalier, A., Grenet, E., Fonty, G., Jamot, J. & Gouet, P. (1993). Degradation of wheat straw and maize stem by a monocentric and a polycentric rumen fungi, alone or in association with rumen cellulolytic bacteria. Animal Feed Science and Technology 42, 6982.CrossRefGoogle Scholar
Romulo, B., Bird, S. H. & Leng, R. A. (1986). The effects of defaunation on digestibility and rumen fungi counts in sheep fed high-fibre diets. Proceedings of the Australian Society for Animal Production 16, 327330.Google Scholar
Romulo, B., Bird, S. W. & Leng, R. A. (1989). Effects of defaunation and protein supplementation on intake, digestibility, N-retention and fungal numbers in sheep fed straw-based diets. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 285288 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Russell, J. B. & Strobel, H. J. (1989). Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology 55, 16.Google ScholarPubMed
Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry 30, 38753883.CrossRefGoogle Scholar
Schlink, A. C., Gordon, G. L. R., Phillips, M. W. & Sutherland, S. (1989). Effects of rumen modifiers and formaldehyde-treated casein on rumen microbial populations of cattle fed sorghum hay. In The Roles of Protozoa and Fungi in Ruminant Digestion, pp. 355357 [Nolan, J. V.Leng, R. A. and Demeyer, D. I. editors]. Armidale, Australia: Penambul Books.Google Scholar
Sekine, J., Shinoda, M., Kamel, H. E. M. & Oura, R. (1995). Effect of kinds of hay on population densities of rumen anaerobic fungi. Indian Journal of Animal Sciences 65, 13521355.Google Scholar
Sijtsma, L. & Tan, B. (1996). Degradation of perennial ryegrass leaf and stem cell walls by the anaerobic fungus Neocallimastix sp. strain CS3b. Applied and Environmental Microbiology 62, 14371440.Google ScholarPubMed
Soetanto, H., Gordon, G. L. R., Hume, I. D. & Leng, R. A. (1985). The role of protozoa and fungi in fibre digestion in the rumen of sheep. In Eficient Animal Production for Asian Welfare (Proceedings of the Third Congress of the Asian-Australian Association of Animal Production Societies, Seoul, Korea), volume 2, pp. 805807.Google Scholar
Stewart, C. S., Duncan, S. H., Richardson, A. J., Calder, A. G. & Dewey, P. J. S. (1995). The effect of the presence of glucose on the fermentation of mannose by the anaerobic fungus Neocallimastix frontalis strain REI. FEMS Microbiology Letters 127, 5763.CrossRefGoogle Scholar
Stewart, C. S., McPherson, C. A. & Cansunar, E. (1987). The effect of lasalocid on glucose uptake, hydrogen production and the solubilization of straw by the anaerobic rumen fungus Neocallimastix frontalis. Letters in Applied Microbiology 5, 57.CrossRefGoogle Scholar
Stewart, C. S. & Richardson, A. J. (1989). Enhanced resistance of anaerobic rumen fungi to the ionophores monensin and lasalocid in the presence of methanogenic bacteria. Journal of Applied Bacteriology 66, 8593.CrossRefGoogle ScholarPubMed
Tanaka, H., Matsui, H., Ushida, K. & Kojima, Y. (1991). Effect of p-coumaric acid on growth and cellulolytic activity of rumen fungi with and without methanogens. In Proceedings of the Third International Symposium on the Nutrition of Herbivores, p. 35 [Zahari, M. W.Tajuddin, Z. A. and Wong, H. K. editors]. Serdang, Selangor, Malaysia: Malaysian Society of Animal Production.Google Scholar
Teunissen, M. J., De Kort, G. V. M., Op Den Camp, H. J. M. & Vogels, G. D. (1993 a). Production of cellulolytic and xylanolytic enzymes during growth of anaerobic fungi from ruminant and nonruminant herbivores on different substrates. Applied Biochemistry and Biotechnology 39, 177189.CrossRefGoogle ScholarPubMed
Teunissen, M. J., Hermans, J. M. H., Huis in 't Veld, J. H. J. & Vogels, G. D. (1993 b). Purification and characterization of a complex-bound and a free β-1,4-endoxylanase from the culture fluid of the anaerobic fungus Piromyces sp. strain E2. Archives of Microbiology 159, 265271.CrossRefGoogle Scholar
Teunissen, M. J., Kets, E. P. W., Op den Camp, H. J. M., Huis in 't Veld, J. H. J. & Vogels, G. D. (1992). Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Archives of Microbiology 157, 176182.Google ScholarPubMed
Teunissen, M. J. & Op den Camp, H. J. M. (1993). Anaerobic fungi and their cellulolytic and xylanolytic enzymes. Antonie Van Leeuwenhoek 63, 6376.CrossRefGoogle ScholarPubMed
Theodorou, M. K., Beever, D. E., Haines, M. J. & Brooks, A. (1990 a). The effect of a fungal probiotic on intake and performance of early weaned calves. Animal Production 50, 577 (Abstr.).Google Scholar
Theodorou, M. K., Gill, M., King-Spooner, C. & Beever, D. E. (1990 b). Enumeration of anaerobic chytridiomycetes as thallus-fonning units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Applied and Environmental Microbiology 56, 10731078.Google ScholarPubMed
Theodorou, M. K., Longland, A. C., Dhanoa, M. S., Lowe, S. E. & Trinci, A. P. J. (1989). Growth of Neocallimustix sp. strain R1 on Italian ryegrass hay: removal of neutral sugars from plant cell walls. Applied and Environmental Microbiology 55, 13631367.Google ScholarPubMed
Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Nielsen, B. B., Rickers, A. & Theodorou, M. K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research 98, 129152.CrossRefGoogle Scholar
Ushida, K., Kayouli, C., de Smet, S. & Jouany, J.-P. (1990). Effect of defaunation on protein and fibre digestion in sheep fed on ammonia-treated straw-based diets with or without maize. British Journal of Nutrition 64, 765775.CrossRefGoogle ScholarPubMed
Ushida, K., Okutani, A. & Kojima, Y. (1993). Effect of sodium propionate on the population size and generic distribution of phycomycete fungi in sheep rumen. Animal Science und Technology 64, 250253.Google Scholar
Ushida, K., Tanaka, H. & Kojima, Y. (1989). A simple in situ method for estimating fungal population size in the rumen. Letters in Applied Microbiology 9, 109111.CrossRefGoogle Scholar
Ushida, K., Umeda, M., Kishigami, N. & Kojima, Y. (1992). Effect of medium-chain and long-chain fatty acid calcium salts on rumen microorganisms and fiber digestion in sheep. Animal Science and Technology 63, 591597.Google Scholar
van der Giezen, M., Rechinger, K. B., Svendsen, I., Durand, R., Hirt, R. P., Fèvre, M., Embley, T. M. & Prins, R. A. (1997). A mitochondnal-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimustix frontalis: support for the hypothesis that hydrogenosomes are modified mitochondria. Molecular Microbiology 23, 1121.CrossRefGoogle ScholarPubMed
Vogels, G. D., Hoppe, W. F. & Stumm, C. K. (1980). Association of methanogenic bacteria with rumen ciliates. Applied und Environmental Microbiology 40, 608612.Google ScholarPubMed
Wallace, R. J. & Joblin, K. N. (1985). Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiology Letters 29, 1926.CrossRefGoogle Scholar
Wallace, R. J. & Munro, C. A. (1986). Influence of the rumen anaerobic fungus Neocallimustix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Letters in Applied Microbiology 3, 2326.CrossRefGoogle Scholar
Welch, R. P., Tsai, K.-P., Harper, E. G., Chang, I. S. & Calza, R. E. (1996). The effect of Aspergillus oryzae fermentation extract on the anaerobic fungus Neocallimastix frontalis EB 188: effects on physiology. Applied Microbiology and Biorechnology 45, 811816.CrossRefGoogle Scholar
Weston, R. H., Lindsay, J. R., Purser, D. B., Gordon, G. L. R. & Davis, P. (1988). Feed intake and digestion responses in sheep to the addition of inorganic sulfur to a herbage diet of low sulfur content. Australian Journal of Agricultural Research 39, 11071119.CrossRefGoogle Scholar
Widyastuti, Y., Newbold, C. J., Stewart, C. S. & Ørskov, E. R. (1995). Interactions between rumen anaerobic fungi and ciliate protozoa in the degradation of rice straw cell walls. Letters in Applied Microbiology 20, 6164.CrossRefGoogle ScholarPubMed
Williams, A. G., Joblin, K. N. & Fonty, G. (1994 a). Interactions between the rumen chytrid fungi and other microorganisms. In Anaerobic Fungi, pp. 191227 [Mountfort, D. O. and Orpin, C. G. editors]. New York: Marcel Dekker.Google Scholar
Williams, A. G. & Orpin, C. G. (1987). Polysaccharide-degradingenzymes formed by three species of anaerobic rumen fungi grown on a range of carbohydrate substrates. Canadian Journal of Microbiology 33, 418426.CrossRefGoogle ScholarPubMed
Williams, A. G. & Withers, S. E. (1991). Effect of ciliate protozoa on the activity polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. Journul of Applied Bacteriology 70, 144155.CrossRefGoogle ScholarPubMed
Williams, A. G., Withers, S. E. & Joblin, K. N. (1991). Xylanolysis by cocultures of the rumen fungus Neocallimusfix frontalis and ruminal bacteria. Letters in Applied Microbiology 12, 232235.CrossRefGoogle Scholar
Williams, A. G., Withers, S. E., Naylor, G. E. & Joblin, K. N. (1994 a). Effect of heterotrophic ruminal bacteria on xylan metabolism by the anaerobic fungus Piromyces communis. Letters in Applied Microbiology 19, 105109.CrossRefGoogle Scholar
Wilson, C. A. & Wood, T. M. (1992). Studies on the cellulase of the rumen anaerobic fungus Neocallimastix frontalis with special reference to the capacity of the enzyme to degrade crystalline cellulose. Enzyme and Microbial Technology 14, 258264.CrossRefGoogle Scholar
Wilson, J. R. (1994). Cell wall characteristics in relation to forage digestion by ruminants. Journal of Agricultural Science 122, 173182.CrossRefGoogle Scholar
Wilson, J. R. & Kennedy, P. M. (1996). Plant and animal constraints to voluntary feed intake associated with fibre characteristics and particle breakdown and passage in ruminants. Australinn Journal of Agricultural Research 47, 199225.CrossRefGoogle Scholar
Wong, M. V. L., Ho, Y. W., Tan, S. G., Abdullah, N. & Jalaludin, S. (1995). Isozyme and morphological characteristics of the anaerobic fungus Piromyces mae isolated from the duodenum, rumen and faeces of sheep. FEMS Microbiology Letters 134, 914.CrossRefGoogle ScholarPubMed
Wood, T. M. & Wilson, C. A. (1995). Studies on the capacity of the cellulase of the anaerobic rumen fungus Pirottwnas communis P to degrade hydrogen bond-ordered cellulose. Applied Microbiology and Biotechnology 43, 572578.CrossRefGoogle ScholarPubMed
Wood, T. M., Wilson, C. A. & McCrae, S. I. (1995). The cellulase system of the anaerobic rumen fungus Neocallimustix frontalis. Studies on the properties of fractions rich in endo (1 → 4)-β-D-glucanase activity. Applied Microbiology and Biorechnology 44, 177184.CrossRefGoogle Scholar
Wubah, D. A., Akin, D. E. & Borneman, W. S. (1993). Biology, fiber-degradation. and enzymology of anaerobic zoosporic fungi. Crirical Reviews in Microbiology 19, 99115.CrossRefGoogle ScholarPubMed
Wubah, D. A., Fuller, M. S. & Akin, D. E. (1991 a). Neocallimastix: a comparative morphological study. Canadian Journal of Botany 69, 835843.CrossRefGoogle Scholar
Wubah, D. A., Fuller, M. S. & Akin, D. E. (1991 b). Resistant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of a cow. Mycologia 83, 4047.CrossRefGoogle Scholar
Wubah, D. A. & Kim, D. S. H. (1996). Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids. Microbiological Research 151, 257262.CrossRefGoogle ScholarPubMed
Yanke, L. J., Dong, Y., McAllister, T. A., Bae, H. D. & Cheng, K.-J. (1993). Comparison of amylolytic and proteolytic activities of Iuminal fungi grown on cereal grains. Canadian Journal of Microbiology 39, 817820.CrossRefGoogle ScholarPubMed
Yarlett, N., Orpin, C. G., Munn, E. A., Yarlett, N. C. & Greenwood, C. A. (1986). Hydrogenosomes in the rumen fungus Neocallimastix parriciarum. Biochemical Journal 236, 729739.CrossRefGoogle Scholar
Zhou, L., Xue, G.-P., Orpin, C. G., Black, G. W., Gilbert, H. J. & Hazlewood, G. P. (1994). Intronless celB from the anaerobi fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochemical Journal 297, 359364.CrossRefGoogle Scholar
Zhu, W. Y., Theodorou, M. K., Longland, A. C., Nielsen, B. B., Dijkstra, J. & Trinci, A. P. J. (1996). Growth and survival of anaerobic fungi in batch and continuous-flow cultures. Anaerobe 2, 2937.CrossRefGoogle Scholar
You have Access
83
Cited by