Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-wsxd2 Total loading time: 0.336 Render date: 2023-02-06T14:59:46.144Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Can secondary osteons be used as ontogenetic indicators in sauropods? Extending the histological ontogenetic stages into senescence

Published online by Cambridge University Press:  06 February 2017

Jessica Mitchell
Affiliation:
Steinmann-Institut für Mineralogie, Geologie und Paläontologie, Universität Bonn, Nussallee 8, D-53115, Bonn, Germany. E-mail: jessica.mitchell@uni-bonn.de, martin.sander@uni-bonn.de
P. Martin Sander
Affiliation:
Steinmann-Institut für Mineralogie, Geologie und Paläontologie, Universität Bonn, Nussallee 8, D-53115, Bonn, Germany. E-mail: jessica.mitchell@uni-bonn.de, martin.sander@uni-bonn.de
Koen Stein
Affiliation:
Earth System Sciences–AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, and Royal Belgian Institute of Natural Sciences, Directorate “Earth and History of Life,” rue Vautier, 29, 1000 Brussels, Belgium. E-mail: kstein@vub.ac.be

Abstract

Sauropod bone histology has provided a great deal of insight into the life history of these enormous animals. However, because of high growth rates, annual growth rings are not common in sauropod long bones, so directly measuring growth rates and determining sexual maturity require alternative measures. Histological ontogenetic stages (HOS) have been established to describe the changes in bone histology through development for basal Macronaria and Diplodocoidea, and subsequently for Titanosauria. Despite this, the current HOS model is not able to discriminate bone tissues in late ontogeny, when sauropods had reached asymptotic size and continued to live into senescence but their long bones became extensively remodeled by secondary osteons and all primary bone was destroyed. Here we establish remodeling stages (RS) to characterize the Haversian bone development through ontogeny in eight sauropod taxa (Apatosaurinae, Giraffatitan brancai, Camarasaurus spp., Dicraeosaurus spp., Ampelosaurus atacis, Phuwiangosaurus sirindhornae, Magyarosaurus dacus, and Alamosaurus sanjuanensis) and find significant correlation of RS with corresponding femur length (CFL) for the studied taxa, with the exception of Dicraeosaurus and Magyarosaurus. Remodeling stages are based on the maximum number of observable generations of crosscutting osteons from the innermost, mid-, and outermost part of the cortex. The correlation with CFL indicates that secondary osteons present an ontogenetic signal that could extend the histological ontogenetic stages. Remodeling stages also provide additional insight into the changes in histology through ontogeny for Sauropoda. This method has the potential to be used in other taxa, such as thyreophorans and many ornithischians, that develop Haversian tissue through development.

Type
Articles
Copyright
Copyright © 2017 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ahlqvist, J., and Damsten, O.. 1969. A modification of Kerley’s method for the microscopic determination of age in human bone. Journal of Forensic Sciences 14:205212.Google ScholarPubMed
Amprino, R., and Marotti, G.. 1964. A topographic quantitative study of bone formation and reconstruction. Bone and Tooth Symposium 1:2133.Google Scholar
Ascenzi, A., and Bonucci, E.. 1967. The tensile properties of single osteons. Anatomical Record 158:375386.CrossRefGoogle ScholarPubMed
Ascenzi, A., and Bonucci, E.. 1968. The compressive properties of single osteons. Anatomical Record 161:377391.CrossRefGoogle ScholarPubMed
Bentolila, V., Boyce, T. M., Fyhrie, D. P., Drumb, R., Skerry, T. M., and Schaffler, M. B.. 1998. Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275281.CrossRefGoogle ScholarPubMed
Bonewald, L. F. 2011. The amazing osteocyte. Journal of Bone and Mineral Research 26:229238.CrossRefGoogle ScholarPubMed
Bonnan, M. F. 2004. Morphometric analysis of humerus and femur shape in Morrison sauropods: implications for functional morphology and paleobiology. Paleobiology 30:444470.2.0.CO;2>CrossRefGoogle Scholar
Britz, H. M., Thomas, C. D. L., Clement, J. G., and Cooper, D. M.. 2009. The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:7783.CrossRefGoogle Scholar
Burr, D. B., Martin, R., Schaffler, M. B., and Radin, E. L.. 1985. Bone remodeling in response to in vivo fatigue microdamage. Journal of Biomechanics 18:189200.CrossRefGoogle ScholarPubMed
Burr, D. B., Ruff, C. B., and Thompson, D. D.. 1990. Patterns of skeletal histologic change through time: comparison of an archaic Native American population with modern populations. Anatomical Record 226:307313.CrossRefGoogle Scholar
Bybee, P., Lee, A., and Lamm, E.. 2005. Sizing the Jurassic theropod dinosaur Allosaurus: assessing growth strategy and evolution of ontogenetic scaling of limbs. Journal of Morphology 267:347359.CrossRefGoogle Scholar
Campione, N. E., and Evans, D. C.. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10:122.CrossRefGoogle Scholar
Castanet, J. 1994. Age estimation and longevity in reptiles. Gerontology 40:174192.CrossRefGoogle ScholarPubMed
Castrogiovanni, P., Imbesi, R., Fisichella, M., and Mazzone, V.. 2011. Osteonic organization of limb bones in mammals, including humans, and birds: a preliminary study. Italian Journal of Anatomy and Embryology 116:3037.Google ScholarPubMed
Cerda, I. A., Chinsamy, A., Pol, D., Otero, A., Powell, J. A., and Martinez, R.. 2016. Novel insight into the growth dynamics of sauropodomorph dinosaurs. Eleventh International Congress of Vertebrate Morphology, Washington, D.C. Anatomical Record Special Feature 299:75.Google Scholar
Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontologia Africana 27:7782.Google Scholar
Chinsamy, A. 1993. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology 18:319329.Google Scholar
Chinsamy, A., and Raath, M.. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana 29:3944.Google Scholar
Chinsamy-Turan, A. 2005. The microstructure of dinosaur bone: deciphering biology with fine-scale techniques. Johns Hopkins University Press, Baltimore, Md.Google Scholar
Company, J. 2011. Bone histology of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the latest Cretaceous of Spain. Naturwissenschaften 98:6778.CrossRefGoogle Scholar
Currey, J. D. 1964. Some effects of ageing in human Haversian systems. Journal of Anatomy 98:6975.Google Scholar
Currey, J. D. 2011. The structure and mechanics of bone. Journal of Materials Science 47:4154.CrossRefGoogle Scholar
Curry, K. 1999. Ontogenetic histology of Apatosaurus (Dinosauria: Sauropoda): new insights on growth rates and longevity. Journal of Vertebrate Paleontology 19:654665.CrossRefGoogle Scholar
Curry Rogers, K., Whitney, M., D’Emic, M., and Bagley, B.. 2016. Precocity in a tiny titanosaur from the Cretaceous of Madagascar. Science 352:450453.CrossRefGoogle Scholar
D’Emic, M., and Wilson, J. A.. 2012. Bone histology of a dwarf sauropod dinosaur from the latest Cretaceous of Jordan and a possible biomechanical explanation for “titanosaur-type” bone histology. Journal of Vertebrate Paleontology 32(Suppl. to Vol. 3), A83.Google Scholar
Enlow, D., and Brown, S.. 1956. A comparative histological study of fossil and recent bone tissues. Part I. Texas Journal of Science 8:405443.Google Scholar
Ericksen, M. 1991. Histologic estimation of age at death using the anterior cortex of the femur. American Journal of Physical Anthropology 84:171179.CrossRefGoogle Scholar
Erickson, G. M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology and Evolution 20:677684.CrossRefGoogle ScholarPubMed
Erickson, G. M., Makovicky, P. J., Currie, P. J., Norell, M. A., Yerby, S. A., and Brochu, C. A.. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430:772775.CrossRefGoogle ScholarPubMed
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F. J., Sire, J. Y., Zylberberg, L., and de Ricqlès, A.. 1990. Microstructure and mineralization of vertebrate skeletal tissues. Pp. 471530 in J. G. Carter, ed. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends Vol. 1 Van Nostrand Reinhold, New York.Google Scholar
Frost, H. M. 1969. Tetracycline-based histological analysis of bone remodeling. Calcified Tissue Research 3:211237.CrossRefGoogle Scholar
García, R. A., Salgado, L., Fernández, M. S., Cerda, I. A., Carabajal, A. P., Otero, A., Coria, R. A., and Fiorelli, L. E.. 2015. Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record. Ameghiniana 52:2968.CrossRefGoogle Scholar
Ghilardi, A. M., Aureliano, T., Duque, R. R. C., Fernandes, M. A., Barreto, A. M. F., and Chinsamy, A.. 2016. A new titanosaur from the Lower Cretaceous of Brazil. Cretaceous Research 67:1624.CrossRefGoogle Scholar
Griebeler, E. M., Klein, N., and Sander, P. M.. 2013. Aging, maturation and growth of sauropodomorph dinosaurs as deduced from growth curves using long bone histological data: an assessment of methodological constraints and solutions. PLoS ONE 8:e67012. doi: 10.1371/journal.pone.0067012.CrossRefGoogle ScholarPubMed
Gross, W. 1934. Die Typen des mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Anatomy and Embryology 103:731764.Google Scholar
Ham, A. 1953. Histology. Lippincott, Philadelphia.Google Scholar
Havill, L. M. 2003. Osteon remodeling dynamics in Macaca mulatta: normal variation with regard to age, sex, and skeletal maturity. Calcified Tissue International 74:95102.CrossRefGoogle ScholarPubMed
Hayashi, S., Carpenter, K., and Suzuki, D.. 2009. Different growth patterns between the skeleton and osteoderms of Stegosaurus (Ornithischia: Thyreophora). Journal of Vertebrate Paleontology 29:123131.CrossRefGoogle Scholar
Hillier, M. L., and Bell, L. S.. 2007. Differentiating human bone from animal bone: a review of histological methods. Journal of Forensic Sciences 52:249263.CrossRefGoogle ScholarPubMed
Horner, J. R., and Padian, K.. 2004. Age and growth dynamics of Tyrannosaurus rex . Proceedings of the Royal Society B 271:18751880.CrossRefGoogle ScholarPubMed
Horner, J. R., de Ricqlès, A., and Padian, K.. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Paleontology 20:115129.CrossRefGoogle Scholar
Jaworski, Z. F., Duck, B., and Sekaly, G.. 1981. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. Journal of Anatomy 133:397.Google ScholarPubMed
Kerley, E. R. 1965. The microscopic determination of age in human bone. American Journal of Physical Anthropology 23:149163.CrossRefGoogle ScholarPubMed
Kerley, E. R., and Ubelaker, D. H.. 1978. Revisions in the microscopic method of estimating age at death in human cortical bone. American Journal of Physical Anthropology 49:545546.CrossRefGoogle ScholarPubMed
Kilbourne, B. M., and Makovicky, P. J.. 2010. Limb bone allometry during postnatal ontogeny in non-avian dinosaurs: postnatal allometry of dinosaur limb bones. Journal of Anatomy 217:135152.Google Scholar
Klein, N., and Sander, P. M.. 2007. Bone histology and growth of the prosauropod dinosaur Plateosaurus engelhardti von Meyer, 1837 from the Norian bonebeds of Trossingen (Germany) and Frick (Switzerland). Special Papers in Palaeontology 77:169.Google Scholar
Klein, N., and Sander, P. M.. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34:247263.CrossRefGoogle Scholar
Klein, N., Sander, P. M., and Suteethorn, V.. 2009. Bone histology and its implications for the life history and growth of the Early Cretaceous titanosaur Phuwiangosaurus sirindhornae. Geological Society London Special Publication 315:217–228.Google Scholar
Klein, N., Sander, P. M., Stein, K., Le Loeuff, J., Carballido, J. L., and Buffetaut, E.. 2012. Modified laminar bone in Ampelosaurus atacis and other titanosaurs (Sauropoda): implications for life history and physiology. PLoS ONE 7:e36907. doi: 10.1371/journal.pone.0036907.CrossRefGoogle ScholarPubMed
Lieberman, D. E., Pearson, O. M., Polk, J. D., Demes, B., and Crompton, A. W.. 2003. Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. Journal of Experimental Biology 206:31253138.CrossRefGoogle ScholarPubMed
Martin, R. 2000. Toward a unifying theory of remodeling. Bone 26:16.CrossRefGoogle Scholar
Martin, R., Pickett, J., and Zinaich, S.. 1980. Studies of skeletal remodeling in aging men. Clinical Orthopaedics and Related Research 149:268.Google Scholar
Mitchell, J., and Sander, P. M.. 2014. The three-front model: a developmental explanation of long bone diaphyseal histology of Sauropoda. Biological Journal of the Linnean Society 112:765781.CrossRefGoogle Scholar
Mori, S., and Burr, D.. 1993. Increased intracortical remodeling following fatigue damage. Bone 14:103109.CrossRefGoogle ScholarPubMed
Mulhern, D. M., and Ubelaker, D. H.. 2003. Histologic examination of bone development in juvenile chimpanzees. American Journal of Physical Anthropology 122:127133.CrossRefGoogle ScholarPubMed
Ortner, D. J. 1975. Aging effects on osteon remodeling. Calcified Tissue Research 18:2736.CrossRefGoogle ScholarPubMed
Padian, K., Werning, S., and Horner, J. R.. 2016. A hypothesis of differential secondary bone formation in dinosaurs. Comptes Rendus Palevol 15:4048.CrossRefGoogle Scholar
Parfitt, A. M. 1994. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of Cellular Biochemistry 55:273286.CrossRefGoogle Scholar
Pfeiffer, S., Lazenby, R., and Chiang, J.. 1995. Cortical remodeling data are affected by sampling location. American Journal of Physical Anthropology 96:8992.CrossRefGoogle ScholarPubMed
R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org.Google Scholar
Richman, E., Ortner, D., and Schulter-Ellis, F.. 1979. Differences in intracortical bone remodeling in three aboriginal American populations: possible dietary factors. Calcified Tissue International 28:209214.CrossRefGoogle ScholarPubMed
Ricqlès, A. de. 1968a. Quelques observations paléohistologiques sur le dinosaurien sauropode Bothriospondylus . Annales de l’Université de Madagascar 6:157209.Google Scholar
Ricqlès, A. de 1968b. Recherches paléohistologiques sur les os longs des tétrapodes: origine du tissu osseux plexiforme des dinosauriens sauropodes. Annales de Paléontologie 54:133145.Google Scholar
Ricqlès, A. de 1980. Tissue structures of dinosaur bone: functional significance and possible relation to dinosaur physiology. A cold look at the warm-blooded dinosaurs. AAAS Selected Symposium 28:103139.Google Scholar
Ricqlès, A. de 1983. Cyclical growth in the long limb bones of a sauropod dinosaur. Acta Palaeontologica Polonica 28:225232.Google Scholar
Robling, A. G., Castillo, A. B., and Turner, C. H.. 2006. Biomechanical and molecular regulation of bone remodeling. Annual Review of Biomedical Engineering 8:455498.CrossRefGoogle ScholarPubMed
Samson, C., and Branigan, K.. 1987. A new method of estimating age at death from fragmentary and weathered bone. Pages 101108 in A. Boddington, A. N. Garland, and R. C. Janaway, eds. Death, decay and reconstruction: approaches to archaeology and forensic science. Manchester University Press, Manchester.Google Scholar
Sander, P. M. 1999. Life history of Tendaguru sauropods as inferred from long bone histology. Fossil Record 2:103112.CrossRefGoogle Scholar
Sander, P. M. 2000. Longbone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26:466488.2.0.CO;2>CrossRefGoogle Scholar
Sander, P. M. 2013. An evolutionary cascade model for sauropod dinosaur gigantism—overview, update and tests. PLoS ONE 8:e78573. http://dx.doi.org/10.1371/journal.pone.0078573.CrossRefGoogle ScholarPubMed
Sander, P. M., and Tückmantel, C.. 2003. Bone lamina thickness, bone apposition rates, and age estimates in sauropod humeri and femora. Paläontologische Zeitschrift 77:161172.CrossRefGoogle Scholar
Sander, P. M., Klein, N., Stein, K., and Wings, O.. 2011. Sauropod bone histology and implications for sauropod biology. Pp. 276302 in N. Klein, K. Remes, C. T. Gee, and P. M. Sander, eds. Biology of the Sauropod Dinosaurs. Understanding the Life of Giants. Indiana University Press, Bloomington.Google Scholar
Sander, P. M., Mateus, O., Laven, T., and Knötschke, N.. 2006. Bone histology indicates insular dwarfism in a new Late Jurassic sauropod dinosaur. Nature 441:739741.CrossRefGoogle Scholar
Singh, I. J., and Gunberg, D. L.. 1970. Estimation of age at death in human males from quantitative histology of bone fragments. American Journal of Physical Anthropology 33:373381.CrossRefGoogle ScholarPubMed
Stein, K., and Prondvai, E.. 2014. Rethinking the nature of fibrolamellar bone: an integrative biological revision of sauropod plexiform bone formation. Biological Reviews of the Cambridge Philosophical Society 89:2447.CrossRefGoogle Scholar
Stein, K., and Sander, P. M.. 2009. Histological core drilling: a less destructive method for studying bone histology. Pp. 6980 in M. A. Brown, J. F. Kane, and W. G. Parker, eds. Methods in Preparation. Proceedings of the First Annual Fossil Preparation and Collections Symposium.Google Scholar
Stein, K., Csiki, Z., Rogers, K. C., Weishampel, D. B., Redelstorff, R., Carballido, J. L., and Sander, P. M.. 2010. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria). Proceedings of the National Academy of Sciences USA 107:92589263.CrossRefGoogle Scholar
Stein, M., Hayashi, S., and Sander, P. M.. 2013. Long bone histology and growth patterns in ankylosaurs: implications for life history and evolution. PLoS ONE 8:e68590. doi: 10.1371/journal.pone.0068590.CrossRefGoogle ScholarPubMed
Stout, S. 1989. The use of cortical bone histology to estimate age at death. Pp. 195207 in M. Y. Icscan, ed. Age markers in the human skeleton. Charles C. Thomas, Springfield, Illinois.Google Scholar
Stout, S. D., and Paine, R. R.. 1994. Bone remodeling rates: a test of an algorithm for estimating missing osteons. American Journal of Physical Anthropology 93:123129.CrossRefGoogle ScholarPubMed
Streeter, M. 2010. A four-stage method of age at death estimation for use in the subadult rib cortex. Journal of Forensic Sciences 55:10191024.CrossRefGoogle ScholarPubMed
Taylor, M. P. 2009. A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai Janensch 1914. Journal of Vertebrate Paleontology 29:787806.CrossRefGoogle Scholar
Thomas, C. D. L., Stein, M. S., Feik, S. A., Wark, J. D., and Clement, J. G.. 2000. Determination of age at death using combined morphology and histology of the femur. Journal of Anatomy 196:463471.CrossRefGoogle ScholarPubMed
Thompson, D. D. 1979. The core technique in the determination of age at death of skeletons. Journal of Forensic Sciences 24:902915.CrossRefGoogle Scholar
Tschopp, E., Mateus, O., and Benson, R. B. J.. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 3:e857. doi: 10.7717/peerj.857.CrossRefGoogle Scholar
van Oers, R. F., Ruimerman, R., Tanck, E., Hilbers, P. A., and Huiskes, R.. 2008. A unified theory for osteonal and hemi-osteonal remodeling. Bone 42:250259.CrossRefGoogle ScholarPubMed
Varricchio, D. J. 1993. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus . Journal of Vertebrate Paleontology 13:99104.CrossRefGoogle Scholar
Walker, R. A., Lovejoy, C. O., and Meindl, R. S.. 1994. Histomorphological and geometric properties of human femoral cortex in individuals over 50: implications for histomorphological determination of age-at-death. American Journal of Human Biology 6:659667.CrossRefGoogle ScholarPubMed
Waskow, K., and Sander, P. M.. 2014. Growth record and histological variation in the dorsal ribs of Camarasaurus sp. (Sauropoda). Journal of Vertebrate Paleontology 34:852869.CrossRefGoogle Scholar
Werning, S. 2012. The ontogenetic osteohistology of Tenontosaurus tilletti . PLoS ONE 7:e33539. doi.org/10.1371/journal.pone.0033539.CrossRefGoogle Scholar
Wilson, J. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:215275.CrossRefGoogle Scholar
Wilson, J., Leiggi, P., and May, P.. 1994. Histological techniques. Vertebrate Paleontological Techniques 1:205234.Google Scholar
Wings, O., Sander, P. M., Tütken, T., Fowler, D., and Sun, G.. 2007. Growth and life history of Asia’s largest dinosaur. Journal of Vertebrate Paleontology 27:167A.Google Scholar
Woodward, H. N., and Lehman, T. M.. 2009. Bone histology and microanatomy of Alamosaurus sanjuanensis (Sauropoda: Titanosauria) from the Maastrichtian of Big Bend National Park, Texas. Journal of Vertebrate Paleontology 29:807821.CrossRefGoogle Scholar
Wu, K., Schubeck, K. E., Frost, H. M., and Villanueva, A.. 1970. Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calcified Tissue Research 6:204219.CrossRefGoogle Scholar
Yee, T. W. 2016. VGAM: vector generalized linear and additive models. R package, Version 1:01. http://CRAN.R-project.org/package=VGAM.Google Scholar
16
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Can secondary osteons be used as ontogenetic indicators in sauropods? Extending the histological ontogenetic stages into senescence
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Can secondary osteons be used as ontogenetic indicators in sauropods? Extending the histological ontogenetic stages into senescence
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Can secondary osteons be used as ontogenetic indicators in sauropods? Extending the histological ontogenetic stages into senescence
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *