Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T13:50:10.967Z Has data issue: false hasContentIssue false

Influence of phylogeny on the estimation of diet from dental morphology in the Carnivora

Published online by Cambridge University Press:  15 November 2021

Samantha S. B. Hopkins*
Affiliation:
Department of Earth Sciences, Clark Honors College, and Museum of Natural and Cultural History, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403, U.S.A. E-mail: shopkins@uoregon.edu
Samantha A. Price
Affiliation:
Department of Biological Sciences, 132 Long Hall, Clemson, South Carolina 29634, U.S.A. E-mail: sprice6@clemson.edu
Alec J. Chiono
Affiliation:
Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, U.S.A. E-mail: ajchiono2@dons.usfca.edu
*
*Corresponding author.

Abstract

Because teeth are the most easily preserved part of the vertebrate skeleton and are particularly morphologically variable in mammals, studies of fossil mammals rely heavily on dental morphology. Dental morphology is used both for systematics and phylogeny as well as for inferences about paleoecology, diet in particular. We analyze the influence of evolutionary history on our ability to reconstruct diet from dental morphology in the mammalian order Carnivora, and we find that much of our understanding of diet in carnivorans is dependent on the phylogenetic constraints on diet in this clade. Substantial error in estimating diet from dental morphology is present regardless of the morphological data used to make the inference, although more extensive morphological datasets are more accurate in predicting diet than more limited character sets. Unfortunately, including phylogeny in making dietary inferences actually decreases the accuracy of these predictions, showing that dietary predictions from morphology are substantially dependent on the evolutionary constraints on carnivore diet and tooth shape. The “evolutionary ratchet” that drives lineages of carnivorans to evolve greater degrees of hypercarnivory through time actually plays a role in allowing dietary inference from tooth shape, but consequently requires caution in interpreting dietary inference from the teeth fossil carnivores. These difficulties are another reminder of the differences in evolutionary tempo and mode between morphology and ecology.

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, D. 2014. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimentional multivariate data. Systematic Biology 63:685697.CrossRefGoogle ScholarPubMed
Adams, D. C., and Otarola-Castillo, E.. 2013. geomorph: an r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4(4):393399.CrossRefGoogle Scholar
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Ashton, K. G. 2004. Comparing phylogenetic signal in intraspecific and interspecific body size datasets. Journal of Evolutionary Biology 17:11571161.CrossRefGoogle ScholarPubMed
Blomberg, S. P., Garland, T., and Ives, A. R.. 2003. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717745.CrossRefGoogle ScholarPubMed
Carbone, C., Mace, G. M., Roberts, S. C., and Macdonald, D. W.. 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402:286288.CrossRefGoogle ScholarPubMed
Clauss, M. 2019. Phylogenetic signal in tooth wear? A question that can be answered by testing. Ecology and Evolution 9:61706171.CrossRefGoogle Scholar
Damuth, J., and Janis, C. M.. 2011. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews 86:733758.CrossRefGoogle ScholarPubMed
Das, I., and Coe, M.. 1994. Dental morphology and diet in anuran amphibians from south India. Journal of Zoology 233:417427.CrossRefGoogle Scholar
DeSantis, L., Fortelius, M., Grine, F. E., Janis, C., Kaiser, T. M., Merceron, G., Purnell, M. A., Schulz-Kornas, E., Saarinen, J., Teaford, M., Ungar, P. S., and Žliobaitė, I.. 2018. The phylogenetic signal in tooth wear: what does it mean? Ecology and Evolution 8:1135911362.CrossRefGoogle ScholarPubMed
Dunlop, J. A., Rayner, K., and Doherty, T. S.. 2017. Dietary flexibility in small carnivores: a case study on the endangered northern quoll, Dasyurus hallucatus. Journal of Mammalogy 98:858866.CrossRefGoogle Scholar
Feranec, R. S., Bryant, J. D., Froelich, P. N., Showers, W. J., Genna, B. J., Cerling, T. E., Harris, J. M., Leakey, M. G., Deniro, M. J., Epstein, S., Dompierre, H., Churcher, C. S., Ehleringer, J. R., Monson, R. K., Sage, R. F., Flanagan, L. B., Pearcy, R. W., Helliker, B. R., MacFadden, B. J., Fraser, M. D., Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., Stauffer, B., Heckathorn, S. A., McNaughton, S. J., Coleman, J. S., Hofmann, R. R., Stewart, D. R. M., Hutchinson, G. E., Janis, C. M., Ehrhardt, D., Janis, C. M., Damuth, J., Theodor, J. M., Koch, P. L., Tuross, N., Fogel, M. L., Hoppe, K. A., Webb, S. D., Koford, C. B., Macfadden, B. J., MacFadden, B. J., Marino, B. D., McElroy, M. B., Salawitch, R. J., Spaulding, W. G., McNaughton, S. J., Tarrants, J. L., McNaughton, M. M., Davis, R. D., Migongo-Bake, W., Hansen, R. M., Puig, S., Videla, F., Monge, S., Roig, V., Cona, M. I., Quade, J., Cerlinga, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., van der Merwe, N. J., Wedin, D. A., Li, M., Schoeninger, M. J., DeNiro, M. J., Solounias, N., Moelleken, S. M. C., Plavcan, J. M., Stowe, L. G., Teeri, J. A., Strömberg, C. A. E., Teeri, J. A., Stowe, L. G., Livingstone, D. A., and Wang, Y.. 2003. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29:230242.2.0.CO;2>CrossRefGoogle Scholar
Foffa, D., Young, M. T., Stubbs, T. L., Dexter, K. G., and Brusatte, S. L.. 2018. The long-term ecology and evolution of marine reptiles in a Jurassic seaway. Nature Ecology and Evolution 2:15481555.CrossRefGoogle Scholar
Fraser, D., and Rybczynski, N.. 2014. Complexity of ruminant masticatory evolution. Journal of Morphology 275:10931102.CrossRefGoogle ScholarPubMed
Fraser, D., Haupt, R. J., and Barr, W. A.. 2018. Phylogenetic signal in tooth wear dietary niche proxies. Ecology and Evolution 8:53555368.CrossRefGoogle ScholarPubMed
Friscia, A. R., Van Valkenburgh, B., and Biknevicius, A. R.. 2007. An ecomorphological analysis of extant small carnivorans. Journal of Zoology 272:82100.CrossRefGoogle Scholar
Geary, R. C. 1930. The frequency distribution of the quotient of two normal variates. Journal of the Royal Statistical Society 93:442446.CrossRefGoogle Scholar
Goillot, C., Blondel, C., and Peigne, S.. 2009. Relationships between dental microwear and diet in Carnivora (Mammalia)—implications for the reconstruction of the diet of extinct taxa. Palaeogeography, Palaeoclimatology, Palaeoecology 271:1323.CrossRefGoogle Scholar
Hastie, T., and Tibshirani, R.. 2013. mda: mixture and flexible discriminant analysis R package, Version 0.4-4. http://CRAN.R-project.org/package=mda, accessed 13 December 2017.Google Scholar
Hedges, R. E. M., and Reynard, L. M.. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science 34:12401251.CrossRefGoogle Scholar
Holliday, J. A. 2010. Evolution in Carnivora: identifying a morphological bias. Pp. 189224 in Goswami, A., and Friscia, A., eds. carnivoran evolution: new views on phylogeny, form, and function. Cambridge University Press, New York.CrossRefGoogle Scholar
Holliday, J. A., and Steppan, S. J.. 2004. Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30:108128.2.0.CO;2>CrossRefGoogle Scholar
Jones, K. E., Benitez, L., Angielczyk, K. D., and Pierce, S. E.. 2018. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evolutionary Biology 18:172.CrossRefGoogle ScholarPubMed
Kaiser, T. M., Mueller, D. W. H., Fortelius, M., Schulz, E., Codron, D., and Clauss, M.. 2013. Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review 43:3446.CrossRefGoogle Scholar
Kamilar, J. M., and Cooper, N.. 2013. Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society of London B, Special Issue 368:20120341.CrossRefGoogle ScholarPubMed
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26:573613.CrossRefGoogle Scholar
Kuhn, T. S., Mooers, A., and Thomas, G. H.. 2011. A simple polytomy resolver for dated phylogenies. Methods in Ecology and Evolution 2:427436.CrossRefGoogle Scholar
Lauder, G. V. 1990. Functional morphology and systematics: studying functional patterns in an historical context. Annual Review of Ecology and Systematics 21:317340.CrossRefGoogle Scholar
Macfadden, B. J., and Cerling, T. E.. 1994. Fossil horses, carbon isotopes and global change. Trends in Ecology and Evolution 9:481486.CrossRefGoogle ScholarPubMed
Maestri, R., Luza, A. L., de Barros, L. D., Hartz, S. M., Ferrari, A., de Freitas, T. R. O., and Duarte, L. D. S.. 2016. Geographical variation of body size in sigmodontine rodents depends on both environment and phylogenetic composition of communities. Journal of Biogeography 43:11921202.CrossRefGoogle Scholar
Marcus, L. E., Hingst-Zaher, E., and Zaher, H.. 2000. Application of landmark morphometrics to skulls representing the orders of living mammals. Hystrix 11:2747.Google Scholar
Meloro, C., and Raia, P.. 2010. Cats and dogs down the tree: the tempo and mode of evolution in the lower carnassial of fossil and living Carnivora. Evolutionary Biology 37:177186.CrossRefGoogle Scholar
Mihlbachler, M. C., Campbell, D., Ayoub, M., Chen, C., and Ghani, I.. 2016. Comparative dental microwear of ruminant and perissodactyl molars: implications for paleodietary analysis of rare and extinct ungulate clades. Paleobiology 42:98116.CrossRefGoogle Scholar
Morgan, C. C. 2008. Geometric morphometrics of the scapula of South American caviomorph rodents (Rodentia: Hystricognathi): form, function and phylogeny. Mammalian Biology 74:497506.CrossRefGoogle Scholar
Motani, R., and Schmitz, L.. 2011. Phylogenetic versus functional signals in the evolution of form-function relationships in terrestrial vision. Evolution 65:22452257.CrossRefGoogle ScholarPubMed
Nyakatura, K., and Bininda-Emonds, O. R. P.. 2012. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biology 10:131.CrossRefGoogle ScholarPubMed
Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331348.CrossRefGoogle Scholar
Pineda-Munoz, S., Evans, A. R., and Alroy, J.. 2016a. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42:659669.CrossRefGoogle Scholar
Pineda-Munoz, S., Lazagabaster, I. A., Alroy, J., and Evans, A. R.. 2016b. Inferring diet from dental morphology in terrestrial mammals. Methods in Ecology and Evolution 8:481491.CrossRefGoogle Scholar
Popowics, T. E. 2003. Postcanine dental form in the mustelidae and viverridae (Carnivora: Mammalia). Journal of Morphology 256:322341.CrossRefGoogle Scholar
Prevosti, F. J., Turazzini, G. F., Ercoli, M. D., and Hingst-Zaher, E.. 2012. Mandible shape in marsupial and placental carnivorous mammals: a morphological comparative study using geometric morphometrics. Zoological Journal of the Linnean Society 164:836855.CrossRefGoogle Scholar
Price, S. A., and Hopkins, S. S. B.. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biological Journal of the Linnean Society 115:173184.CrossRefGoogle Scholar
Price, S. A., Hopkins, S. S. B., Smith, K. K., and Roth, V. L.. 2012. Tempo of trophic evolution and its impact on mammalian diversification. Proceedings of the National Academy of Sciences USA 109:70087012.CrossRefGoogle ScholarPubMed
Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3:217223.CrossRefGoogle Scholar
Rohlf, F. J. 2009. tpsDig., Version 2.14. Department of Ecology and Evolution, State University of New York, Stony Brook.Google Scholar
Samuels, J. X. 2009. Cranial morphology and dietary habits of rodents. Zoological Journal of the Linnean Society 156:864888.CrossRefGoogle Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671675.CrossRefGoogle ScholarPubMed
Spencer, E. E., Newsome, T. M., and Dickman, C. R.. 2017. Prey selection and dietary flexibility of three species of mammalian predator during an irruption of non-cyclic prey. Royal Society Open Science 4(9):170317.CrossRefGoogle ScholarPubMed
Tarquini, S. D., Chemisquy, M. A., and Prevosti, F. J.. 2020. Evolution of the carnassial in living mammalian carnivores (Carnivora, Didelphimorphia, Dasyuromorphia): diet, phylogeny, and allometry. Journal of Mammalian Evolution 27:95109.CrossRefGoogle Scholar
Tseng, Z. J., and Flynn, J. J.. 2018. Structure-function covariation with nonfeeding ecological variables influences evolution of feeding specialization in Carnivora. Science Advances 4. doi: 10.1126/sciadv.aao5441.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B. 1988. Trophic diversity in past and present guilds of large predatory mammals. Paleobiology 14:155173.CrossRefGoogle Scholar
Van Valkenburgh, B. 1999. Major patterns in the history of carnivorous mammals. Annual Review of Earth and Planetary Sciences 27:463493.CrossRefGoogle Scholar
Van Valkenburgh, B. 2007. Deja vu: the evolution of feeding morphologies in the Carnivora. Integrative and Comparative Biology 47:147163.CrossRefGoogle ScholarPubMed
Van Valkenburgh, B., Wang, X., and Damuth, J.. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. Science 306:101104.CrossRefGoogle ScholarPubMed
Verde Arregoitia, L. D., Fisher, D. O., and Schweizer, M.. 2017. Morphology captures diet and locomotor types in rodents. Royal Society Open Science 4(1):160957.CrossRefGoogle ScholarPubMed
Vidal-García, M., and Scott Keogh, J.. 2017. Phylogenetic conservatism in skulls and evolutionary lability in limbs—morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evolutionary Biology 17:165.CrossRefGoogle ScholarPubMed
Wainwright, P. C., and Reilly, S. M.. 1994. Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago.Google Scholar
Wainwright, P. C., Alfaro, M. E., Bolnick, D. E., and Hulsey, C. D.. 2005. Many-to-one mapping of form to function: a general principle in organismal design? Integrative and Comparative Biology 45:256262.CrossRefGoogle ScholarPubMed
Wong, J. Y., Chan, K. Y. K., and Chan, B. K. K.. 2018. Phylogenetic, ecological and biomechanical constraints on larval form: a comparative morphological analysis of barnacle nauplii. PLoS ONE 13(11):e0206973.CrossRefGoogle ScholarPubMed
Zar, J. H. 2010. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar