Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-17T19:25:06.834Z Has data issue: false hasContentIssue false

Evolution of development of the vertebrate dermal and oral skeletons: unraveling concepts, regulatory theories, and homologies

Published online by Cambridge University Press:  08 April 2016

Philip C. J. Donoghue*
Affiliation:
Lapworth Museum of Geology, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. E-mail: p.c.j.donoghue@bham.ac.uk

Abstract

It has been contended that Reif's odontode regulation theory is a rival and alternative to Stensiö and ørvig's lepidomorial theory as means of explaining the evolution of development of the vertebrate dermal and oral skeleton. The lepidomorial theory is a pattern-based theory that provides a homological framework that goes further than the odontode regulation theory in comparing dental papillae and their products, and it provides an explanatory mechanism for such relationships a posteriori. In contrast, the odontode regulation theory is process-based and observes only developmental similarity, providing no means of identifying homologies beyond this. The lepidomorial theory is superior to the odontode regulation theory in its ability to trace homology through the evolution of development of the dermal and oral skeleton. The criteria proposed to identify homology between scales—either within a given individual or taxon, or between different individuals or taxa—are, primarily, vascular architecture and, secondarily, external morphology. External morphology may be excluded on Reif's argument for the overarching principle of differentiation, a hypothesis supported by recent advances in the understanding of dental morphogenesis. Vascular architecture is potentially useful but appears to be determined by tooth/scale morphology rather than reflecting historical (phylogenetic) constraint. Data on the development of epithelial appendages, including teeth, scales, and feathers, indicate that individual primordia develop through progressive differentiation of originally larger, homogenous morphogenetic fields. Thus, there is no mechanism of ontogenetic developmental concrescence, just differentiation. Phylogenetic patterns of concrescence and differentiation are similarly achieved through ontogenetic developmental differentiation, or a lack thereof. In practice, however, it is not possible to distinguish between patterns of phylogenetic concrescence and differentiation because there is no means of identifying homology between individual elements within a squamation, or a dentition (in almost all instances). Thus, phylogenetic patterns of increase and decrease in the numbers of elements constituting dentitions or dermal elements are best described as such; further attempts to constrain precise underlying patterns remain without constraint and outside the realms of scientific enquiry. The application of the homology concept in the dermal and visceral skeletons is explored and it is determined that odontodes are serial homologs, conform only to the biological homology concept at this level of observation, and are devoid of phylogenetic meaning. It is concluded that Reif's theory is close to a universal theory of the evolution of development for the dermoskeleton and dentition, and additional components of theory, including the regulatory basis of temporal and spatial patterning, are tested and extended in light of data on the development of the chick feather array. Finally, the dermoskeleton is identified as an exemplary system for examining the regulatory basis of patterning and morphogenesis as it encompasses and surpasses the repertoire of established model organ systems.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adloff, P. 1916. Die Entwicklung des Zahnsystems der Säugetiere und des Menschen. Verlag von Hermann Meusser, Berlin.Google Scholar
Agassiz, L. 1833–1843. Recherches sur les Poissons Fossiles. Imprimerie de Petitpierre, Neuchâtel.Google Scholar
Ahlberg, P. E., ed. 2001. Major events in vertebrate evolution: palaeontology, phylogeny, genetics and development. Taylor and Francis, London.Google Scholar
Allis, E. P. 1888. On the morphology of certain of the bones of the cheek and snout of Amia. Journal of Morphology 1:425466.Google Scholar
Ameghino, F. 1884. Filogenia.Google Scholar
Ameghino, F. 1896. Sur l'évolution des dents des mammifères. Boletín de la Academia Nacional de Ciencias, Córdoba, Argentina 14:381517.Google Scholar
Ameghino, F. 1899. On the primitive type of the plexodont molars of mammals. Proceedings of the Zoological Society, London 1899:555571.CrossRefGoogle Scholar
Andrews, A. K. 1970. Squamation chronology of the flathead minnow, Pimephales promelas. Transactions of the American Fisheries Society 99:429432.Google Scholar
Andrews, S. M., Miles, R. S., and Walker, A. D., eds. 1977. Problems in vertebrate evolution. Linnean Society Symposium Series 4. Academic Press, London.Google Scholar
Armstrong, J. G. 1973. Squamation chronology of the zebrafish (Cyprinidae), Brachydanio rerio. Copeia 1973:823824.Google Scholar
Atchley, W. R., and Hall, B. K. 1991. A model for development and evolution of complex morphological structures and its application to the mammalian mandible. Biological Reviews 66:101157.CrossRefGoogle Scholar
Bateson, W. 1892. On numerical variation in teeth, with a discussion of the concept of homology. Proceedings of the Zoological Society, London 1892:102115.Google Scholar
Bateson, W. 1894. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. Macmillan, London.Google Scholar
Bei, M., and Maas, R. 1998. FGFs and Bmp4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125:43254333.Google Scholar
Bernick, S. 1960. Vascular supply to the developing teeth of rats. Anatomical Record 137:141151.Google Scholar
Bernick, S. 1962. Ages changes in the blood supply to molar teeth of rats. Anatomical Record 144:265274.Google Scholar
Bolk, L. 1912. On the structure of the reptilian dentition and its relationship to the mammalian dentition. Anatomischer Anzeiger 41(Suppl.).Google Scholar
Bolk, L. 1922. Odontological essays. 4. On the relation between reptilian and mammalian teeth. Journal of Anatomy 56:107136.Google Scholar
Burke, A. C. 2000. Hox genes and the global patterning of the somitic mesoderm. Current Topics in Developmental Biology 47:155181.Google Scholar
Burke, A. C., Nelson, B. A., and Tabin, C. 1995. Hox genes and the evolution of vertebrate axial morphology. Development 121:333346.CrossRefGoogle ScholarPubMed
Butler, P. M. 1967. Dental merism and tooth development. Journal of Dental Research 46:845850.Google Scholar
Butler, P. M. 1978. The ontogeny of mammalian heterodonty. Journal de Biologie Buccale 6:217227.Google ScholarPubMed
Butler, P. M. 1995. Ontogenetic aspects of dental evolution. International Journal of Developmental Biology 39:2534.Google Scholar
Carroll, S. B. 1995. Homeotic genes and the evolution of arthropods and chordates. Nature 376:479485.Google Scholar
Cassin, C., and Capuron, A. 1979. Buccal organogenesis in Pleurodeles waltii Michah (urodele amphibian), study by intrablastocoelic transplantation and in vitro culture. Journal de Biologie Buccale 7:6176.Google Scholar
Chibon, P. 1966. Analyse expérimental de la régionalisation et des capacités morphogénétiques de la crête neurale chez l'amphibien urodèle Pleurodeles waltll Michah. Mémoires de la Société Zoologique de France 36:1107.Google Scholar
Chibon, P. 1967. Marquage nucléaire par la thymidine tritée des dérivés de la crête neurale chez l'amphibien urodèle Pleurodeles waltll Michah. Journal of Embryology and Experimental Morphology 18:343358.Google Scholar
Chibon, P. 1970. Capacité de régulation des excédents dans la crête neurale d'Amphibien. Journal of Embryology and Experimental Morphology 24:479496.Google Scholar
Chuong, C.-M., ed. 1998. Molecular basis of epithelial appendage morphogenesis. R. G. Landes, Austin.Google Scholar
Chuong, C.-M., Chodankar, R., Widelitz, R. B., and Jiang, T.-X. 2000a. Evo-Devo of feather and scales: building complex epithelial appendages. Current Opinion in Genetics and Development 10:449456.Google Scholar
Chuong, C.-M., Patel, N., Lin, J., Jung, H.-S., and Widelitz, R. B. 2000b. Sonic hedgehog signaling pathway in vertebrate epithelial appendage morphogenesis: perspectives in development and evolution. Cellular and Molecular Life Sciences 57:16721681.Google Scholar
Coates, M. I., and Cohn, M. J. 1998. Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution. Bio-Essays 20:371381.Google Scholar
Coates, M. I., and Sequeira, S. E. K. 2001. Early sharks and primitive gnathostomes interrelationships. Pp. 241262in Ahlberg, 2001.Google Scholar
Coin, R., Schmitt, R., Lesot, H., Vonesch, J.-L., and Ruch, J.-V. 2000. Regeneration of halved embryonic lower first mouse molars: correlation with the distribution pattern of non dividing IDE cells, the putative organizers of morphogenetic units, the cusps. International Journal of Developmental Biology 44:289295.Google Scholar
Conley, J. M., and Witt, A. 1966. The origin and development of scales in the Flier, Centrarchus macropterus (Lacépède). Transactions of the American Fisheries Society 95:433434.Google Scholar
Cooper, J. A. 1971. Scale development as related to growth of juvenile black crappie, Pomoxis nigromaculatus Lesueur. Transactions of the American Fisheries Society 100:570572.Google Scholar
Cope, E. D. 1883. On the trituberculate type of molar teeth in the Mammalia. Proceedings of the American Philosophical Society 21:324326.Google Scholar
Cope, E. D. 1889. Synopsis on the families of the Vertebrata. American Naturalist 23:129.Google Scholar
Crowe, R., Henrique, D., Ish-Horowicz, D., and Niswander, L. 1998. A new role for Notch and Delta in cell fate decisions: patterning the feather array. Development 125:767775.Google Scholar
de Beer, G. R. 1958. Embryos and ancestors. Oxford University Press, London.Google Scholar
de Beer, G. R. 1971. Homology: an unsolved problem. Oxford University Press, London.Google Scholar
Devillers, C. 1947. Recherches sur le crâne dermique des téléostéens. Annales de Paléontologie 33:194.Google Scholar
Donoghue, P. C. J., and Aldridge, R. J. 2001. Origin of a mineralized skeleton. Pp. 85105in Ahlberg, 2001.Google Scholar
Donoghue, P. C. J., and Sansom, I. J. 2002. Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique 59:352372.Google Scholar
D'Souza, R. N., Åberg, T., Gaikwad, J., Cavender, A., Owen, M., Karsenty, G., and Thesleff, I. 1999. Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126:29112920.CrossRefGoogle ScholarPubMed
Ferguson, B. M., Tucker, A. S., Christensen, L., Lau, A. L., Matzuk, M. M., and Sharpe, P. T. 1998. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition. Genes and Development 12:26362649.Google Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Gérauldie, J., Meunier, F. J., Sire, J.-Y., Zylberberg, L., and de Ricqlès, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. Pp. 471530in Carter, J. G., ed. Skeletal biomineralization: patterns, processes, and evolutionary trends. Van Nostrand Reinhold, New York.Google Scholar
Garcia-Fernandez, J., and Holland, P. W. H. 1994. Archetypal organisation of the amphioxus Hox gene cluster. Nature 370:563566.Google Scholar
Gaunt, S. J. 1994. Conservation of the Hox code during morphological evolution. International Journal of Developmental Biology 38:549552.Google Scholar
Glasstone, S. 1952. The development of halved tooth germs: a study in experimental embryology. Journal of Anatomy 87:1215.Google Scholar
Goodrich, E. S. 1907. On the scales of fish, living and extinct, and their importance in classification. Proceedings of the Zoological Society, London 2:751774.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Graham-Smith, W. 1978. On the lateral lines and dermal bones in the parietal region of some crossopterygian and dipnoan fishes. Philosophical Transactions of the Royal Society of London B 282:41105.Google Scholar
Gross, W. 1973. Kleinschuppen, flossenstacheln und Zähne von Fischen aus Europäischen und Nordamerikanischen bone-beds des Devons. Palaeontographica, Abteilung A 142:51155.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. 2 vols. Georg Reimer, Berlin.Google Scholar
Hall, B. K. 1998. Evolutionary developmental biology. Chapman and Hall, London.Google Scholar
Halstead Tarlo, B. J., and Halstead Tarlo, L. B. 1965. The origin of teeth. Discovery 26:2026.Google Scholar
Hertwig, O. 1874a. Ueber Bau und Entwickelung der Placoidschuppen und der Zähne der Selachier. Jenaische Zeitschrift für Naturwissenschaftliche 8:221404.Google Scholar
Hertwig, O. 1874b. Ueber das Zähnsystem der Amphibien und seine Bedeutung für die Genese des Skelets der Mundhöhle. Eine vergleichend anatomische, entwickelungsgeschichtliche Untersuchung. Archiv für mikroskopische Anatomie 11(Suppl).Google Scholar
Hertwig, O. 1876. Ueber das Hautskelet der Fische. Morphologisches Jahrbuch 2:328395.Google Scholar
Hertwig, O. 1879. Ueber das Hautskelet der Fische. 2: Das Hautskelet der Ganoiden (Lepidosteus und Polypterus). Morphologisches Jahrbuch 5:121.Google Scholar
Hertwig, O. 1882. Ueber das Hautskelet der Fische. 3: Daus Hautskelet der Pediculati, der Discoboli, der Gattung Diana, der Centriscidae, einiger Gattungen aus der Familie der Triglidae und der Plectognathen. Morphologisches Jahrbuch 7:142.Google Scholar
Hitchin, A. D., and Morris, I. 1966. Geminated odontome-con-nation of the incisors in the dog—its etiology and ontogeny. Journal of Dental Research 45:575583.Google Scholar
Hogan, B. L. M. 1999. Morphogenesis. Cell 96:225233.Google Scholar
Hutchinson, P. 1973. A revision of the redfieldiiform and per-leidiform fishes from the Triassic of Bekker's Kraal (South Africa) and Brookville (New South Wales). Bulletin of the British Museum (Natural History), Geology 22:233354.Google Scholar
Inohaya, K., and Kudo, A. 2000. Temporal and spatial patterns of cbfa1 expression during embryonic development in the teleost, Oryzias latipes. Development, Genes and Evolution 210:570574.Google Scholar
Jardine, N. 1969. The observational and theoretical components of homology: a study based on the morphology of the dermal skull-roofs of rhipidistian fishes. Biological Journal of the Linnean Society 1:327361.CrossRefGoogle Scholar
Jarvik, E. 1944. On the dermal bones, sensory canals and pit-organs of the skull in Eusthenopteron foordi Whiteaves, with some remarks on E. säve-söderberghi Jarvik. Kungliga Svenska Vetenskapsakademiens Handlingar 21:148.Google Scholar
Jarvik, E. 1948. On the Middle Devonian crossopterygians from the Hornelen Field in Western Norway. Universitet i Bergen Årbok 1948.Google Scholar
Jarvik, E. 1950. Middle Devonian vertebrates from Canning Land and Wegeners Halvø (East Greenland), Part II. Crossopterygii. Meddelelser om Grönland 96:1132.Google Scholar
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians. Meddelelser om Grönland 114:190.Google Scholar
Jarvik, E. 1960. Théories de l'évolution des vertébrés reconsidérées à la lumière des récentes découvertes sur les vertébrés inférieurs. Masson et Cie, Paris.Google Scholar
Jernvall, J. 1995. Mammalian molar cusp patterns: developmental mechanisms of diversity. Acta Zoologica Fennica 198:161.Google Scholar
Jernvall, J., and Thesleff, I. 2000. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mechanisms of Development 92:1929.CrossRefGoogle ScholarPubMed
Jernvall, J., Åberg, T., Kettunen, P., Keránen, S., and Thesleff, I. 1998. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125:161169.Google Scholar
Jiang, T.-X., Jung, H.-S., Widelitz, R. B., and Chuong, C.-M. 1999. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126:49975009.Google Scholar
Jollie, M. 1984. Development of the head skeleton and pectoral girdle of salmons, with a note on the scales. Canadian Journal of Zoology 62:17571778.Google Scholar
Jung, H.-S., Francis-West, P. H., Widelitz, R. B., Jiang, T.-X., Ting-Berreth, S., Tickle, C., Wolpert, L., and Chuong, C.-M. 1998. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Developmental Biology 196:1123.Google Scholar
Kanzler, B., Viallet, J. P., Le Mouellic, H., Boncinelli, E., Duboule, D., and Dhouailly, D. 1994. Differential expression of two different homeobox gene families during mouse tegument morphogenesis. International Journal of Developmental Biology 38:633640.Google Scholar
Kanzler, B., Prin, F., Thelu, J., and Dhouailly, D. 1997. CHOXC-8 and CHOXD-13 expression in embryonic chick skin and cutaneous appendage specification. Developmental Dynamics 210:274287.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Karatajuté-Talimaa, V. 1992. The early stages of dermal skeleton formation in chondrichthyans. Pp. 223231in Mark-Kurik, E., ed. Fossil fishes as living animals. Institute of Geology, Tallinn.Google Scholar
Karatajuté-Talimaa, V. 1998. Determination methods for the exoskeletal remains of early vertebrates. Mitteilungen ausdem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 1:2152.Google Scholar
Keränen, S. V. E., Åberg, T., Kettunen, P., Thesleff, I., and Jernvall, J. 1998. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Development, Genes and Evolution 208:477486.Google Scholar
Keränen, S. V. E., Kettunen, P., Åberg, T., Thesleff, I., and Jernvall, J. 1999. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Development, Genes and Evolution 209:495506.Google Scholar
Kettunen, P., and Thesleff, I. 1998. Expression and function of FGFs-4, -8 and -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Developmental Dynamics 211:256268.Google Scholar
Klaatsch, H. 1890. Zur Morphologie der Fischshcuppen und zur Geschichte der Hautsubstanzgewebe. Morphologisches Jahrbuch 16:97196, 209–258.Google Scholar
Kollar, E. J., and Baird, G. R. 1969. The influence of the dental papilla on the developmment of tooth shape in embryonic mouse germs. Journal of Embryology and Experimental Morphology 21:131148.Google Scholar
Kollar, E. J., and Baird, G. R. 1970. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. Journal of Embryology and Experimental Morphology 24:173186.Google Scholar
Kollar, E. J., and Mina, M. 1987. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Archives of Oral Biology 32:123127.Google Scholar
Kollar, E. J., and Mina, M. 1991. Role of the early epithelium in the patterning of the teeth and Meckel's cartilage. Journal of Craniofacial Genetics and Developmental Biology 11:223228.Google Scholar
Krejsa, R. J. 1979. The comparative anatomy of the integumental skeleton. Pp. 112191 in Wake, M. H., ed. Hyman's comparative vertebrate anatomy. University of Chicago Press, Chicago.Google Scholar
Kükenthal, W. 1893. Entwickelungsgeschichtliche Untersuchungen am Pinnipediergebisse. Jenaische Zeitschrift für Naturwissenschaftliche 28:76118.Google Scholar
Law, L., Fishelberg, G., Skribner, J. E., and Lin, L. M. 1994. Endodontic treatment of mandibular molars with concrescence. Journal of Endodontics 20:562564.Google Scholar
Lepkowski, W. 1901. Die Verteilung der Gefässe in den Zähnen des Menschen. Anat. Hefte 17:183195.Google Scholar
Lumsden, A. G. S. 1984. Tooth morphogenesis: contributions of the cranial neural crest cells in mammals. In Belcour, A. B. and Ruch, J.-V., eds. Tooth morphogenesis and differentiation. Colloque Inserm 125:2940. INSERM, Paris.Google Scholar
Lumsden, A. G. S. 1987. The neural crest contribution to tooth development in the mammalian embryo. Pp. 261300 in Maderson, P. F. A., ed. Developmental and evolutionary aspects of the neural crest. Wiley, New York.Google Scholar
Lumsden, A. G. S. 1988. Spatial organisation of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 1988(Suppl.):155169.Google Scholar
Lumsden, A. G. S., Sprawson, N., and Graham, A. 1991. Segmental origin and migration of neural crest cells in the hind-brain region of the chick embryo. Development 113:12811291.CrossRefGoogle ScholarPubMed
Lund, R. 1985. The morphology of Falcatus falcatus (St. John and Worthen), a Mississippian stethacanthid chondrichthyan from the Bear Gulch Limestone of Montana. Journal of Vertebrate Paleontology 5:119.Google Scholar
Maisey, J. G. 1988. Phylogeny of early vertebrate skeletal induction and ossification patterns. Evolutionary Biology 22:136.Google Scholar
Mauger, A. 1972. Role du mésoderme somitique dans le développement du plumage dorsal chez l'embryon de Poulet. II. Régionalisation du mésoderme plumigène. Journal of Embryology and Experimental Morphology 28:343366.Google Scholar
McCrimmon, H. R., and Swee, U. B. 1967. Scale formation as related to growth and development of young carp, Cyprinus carpio L. Journal of the Fisheries Research Board of Canada 24:4751.Google Scholar
Miles, A. E. W., and Grigson, C. 1990. Colyer's variations and diseases of the teeth of animals. Cambridge University Press, Cambridge.Google Scholar
Moy-Thomas, J. A. 1938. The problem of the evolution of the dermal bones in fishes. Pp. 305319in de Beer, G. R., ed. Evolution, essays on aspects of evolutionary biology. Clarendon, Oxford.Google Scholar
Mundlos, S., Otto, F., Mundlos, J. B., Aylsworth, A. S., Albright, S., Lindhout, D., Cole, W. G., Henn, W., Knoll, J. H. M., Owen, M. J., Mertelsmann, R., Zabel, B. U., and Olsen, B. R. 1997. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773779.Google Scholar
Neubüser, A., Peters, H., Balling, R., and Martin, G. R. 1997. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90:247255.Google Scholar
Opperman, L. A. 2000. Cranial sutures as intramembranous bone growth sites. Developmental Dynamics 219:472485.Google Scholar
Ørvig, T. 1951. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs. 1. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Arkiv för Zoologi 2:321454.Google Scholar
Ørvig, T. 1957. Remarks on the vertebrate fauna of the lower upper Devonian of Escuminac Bay, P. Q., Canada, with special reference to the Porolepiform Crossopterygians. Arkiv för Zoologi 10:367427.Google Scholar
Ørvig, T. 1967. Phylogeny of tooth tissues: evolution of some calcified tissues in early vertebrates. Pp. 45110in Miles, A. E. W., ed. Structural and chemical organisation of teeth. Academic Press, New York.Google Scholar
Ørvig, T. 1968. The dermal skeleton: general considerations. Pp. 374397in Ørvig, T., ed. Current problems of lower vertebrate phylogeny. Almquist and Wiksell, Stockholm.Google Scholar
Ørvig, T. 1975. Description, with special reference to the dermal skeleton, of a new radotinid arthrodire from the Gedinnian of Arctic Canada. In Lehman, J.-P., ed. Problèmes actuels de paléontologie: évolution des vertébrés. Colloques Internationaux du Centre National de la Recherche Scientifique 218:4171.Google Scholar
Ørvig, T. 1977. A survey of odontodes (‘dermal teeth’) from developmental, structural, functional, and phyletic points of view. Pp. 5375 in Andrews, et al. 1977.Google Scholar
Osborn, H. F. 1907. Evolution of mammalian molar teeth to and from the triangular type. Macmillan, New York.Google Scholar
Owen, R. 1845. Odontography. Hippotype Baillière, London.Google Scholar
Palmer, R. M., and Lumsden, A. G. S. 1987. Development of periodontal ligament and alveolar bone in homografted recombinations of enamel organs and papillary, pulpal and follicular mesenchyme in the mouse. Archives of Oral Biology 32:281289.CrossRefGoogle ScholarPubMed
Parrington, F. R. 1949. A theory of the relations of lateral lines to dermal bones. Proceedings of the Zoological Society, London 119:6578.Google Scholar
Parrington, F. R. 1956. The patterns of dermal bones in primitive vertebrates. Proceedings of the Zoological Society, London 127:389411.Google Scholar
Parrington, F. R. 1967. The identification of the dermal bones of the head. Journal of the Linnean Society (Zoology) 47:231239.Google Scholar
Patterson, C. 1977. Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. Pp. 77121 in Andrews, et al. 1977.Google Scholar
Pavlica, Z., Erjavec, V., and Petelin, M. 2001. Teeth abnormalities in the dog. Acta Veterinaria Brno 70:6572.Google Scholar
Pehrson, T. 1922. Some points in the cranial development of teleostomian fishes. Acta Zoologica 3:163.Google Scholar
Peterková, R., Peterka, M., Viriot, L., and Lesot, H. 2000. Dentition development and budding morphogenesis. Journal of Craniofacial Genetics and Developmental Biology 20:158172.Google Scholar
Peters, H., and Balling, R. 1999. Teeth: where and how to make them. Trends in Genetics 15:5965.Google Scholar
Peters, H., Neubüser, A., Kratochwil, K., and Balling, R. 1998. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes and Development 12:27352747.Google Scholar
Peyer, B. 1968. Comparative odontology. University of Chicago Press, Chicago.Google Scholar
Priegel, G. R. 1966. Early scale development in the freshwater drum, Aplodinotus grunniens Rafinesque. Transactions of the American Fisheries Society 95:434436.Google Scholar
Prince, V. E., Joly, L., Ekker, M., and Ho, R. K. 1998. Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125:407420.Google Scholar
Priolo, M., Silengo, M., Lerone, M., and Ravazzolo, R. 2000. Ectodermal dysplasias: not only ‘skin’ deep. Clinical Genetics 58:415430.Google Scholar
Quilhac, A. 2000. Études des interactions épidermo-dermiques lors du développement du dermosquelette des ostéichthyens: le modèle écaille. Bulletin de la Société Zoologique de France 125:321332.Google Scholar
Reid, A. I., and Gaunt, S. J. 2002. Colinearity and non-colinearity in the expression of Hox genes in developing chick skin. International Journal of Developmental Biology 46:209215.Google Scholar
Reif, W.-E. 1973. Ontogenese des Hautskelettes von Heterodontus falcifer (Selachii) aus dem Untertithon. Stuttgarter Beitrage zur Naturkunde B 7:116.Google Scholar
Reif, W.-E. 1974. Morphogenese und Musterbildung des Hautzähnchen-Skelettes von Heterodontus. Lethaia 7:2542.Google Scholar
Reif, W.-E. 1976. Morphogenesis, pattern formation and function of the dentition of Heterodontus (Selachii). Zoomorphologie 83:147.Google Scholar
Reif, W.-E. 1978a. Types of morphogenesis of the dermal skeleton in fossil sharks. Paläontologische Zeitschrift 52:110128.Google Scholar
Reif, W.-E. 1978b. Shark dentitions: morphogenetic processes and evolution. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 157:107115.Google Scholar
Reif, W.-E. 1978c. Wound healing in sharks: form and arrangement of repair scales. Zoomorphologie 90:101111.Google Scholar
Reif, W.-E. 1980a. A model of morphogenetic processes in the dermal skeleton of elasmobranchs. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 159:339359.Google Scholar
Reif, W.-E. 1980b. Development of dentition and dermal skeleton in embryonic Scyliorhinus canicula. Journal of Morphology 166:275288.Google Scholar
Reif, W.-E. 1982a. Evolution of dermal skeleton and dentition in vertebrates: the odontode regulation theory. Evolutionary Biology 15:287368.Google Scholar
Reif, W.-E. 1982b. Morphogenesis and function of the squamation in sharks. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 164:172183.Google Scholar
Reif, W.-E., and Richter, M. 2001. Revisiting the lepidomorial and odontode regulation theories of dermo-skeletal morphogenesis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 219:285304.Google Scholar
Romer, A. S. 1941. Notes on the crossopterygian hyomandibular and braincase. Journal of Morphology 69:141160.Google Scholar
Romer, A. S. 1945. Vertebrate paleontology. University of Chicago Press, Chicago.Google Scholar
Rose, C. 1892. Über die Entstehung und Förmabänderungen der menschlichen Molaren. Anatomischer Anzeiger 7:393421.Google Scholar
Roth, V. L. 1984. On homology. Biological Journal of the Linnean Society 22:1329.Google Scholar
Roth, V. L. 1988. The biological basis of homology. Pp. 126in Humphries, C. J., ed. Ontogeny and systematics. British Museum (Natural History), London.Google Scholar
Sansom, I. J., Smith, M. P., and Smith, M. M. 1996. Scales of thelodont and shark-like fishes from the Ordovician. Nature 379:628630.Google Scholar
Säve-Söderbergh, G. 1933. The dermal bones of the head and the lateral line system in Osteolepis macrolepidotus Ag., with remarks on the terminology of the lateral line system and on the dermal bones in certain other crossopterygians. Nova Acta Regiae Societatis Scientarium Upsaliensis, series 4, 9:1123.Google Scholar
Säve-Söderbergh, G. 1935. On the dermal bones of the head in labyrinthodont stegocephalians and primitive Reptilia with special reference to Eotriassic stegocephalians from East Greenland. Meddelelser om Grönland 98:1211.Google Scholar
Säve-Söderbergh, G. 1941. Notes on the dermal bones of the head in Osteolepis macrolepidotus Ag., and the interpretation of the lateral line system in certain primitive vertebrates. Zoologiska Bidrag från Uppsala. 20:523541.Google Scholar
Schaeffer, B. 1977. The dermal skeleton in fishes. Pp. 2554in Andrews, et al. 1977.Google Scholar
Schultze, H.-P., and Bardack, D. 1987. Diversity and size changes in palaeonisciform fishes (Actinopterygii, Pisces) from the Pennsylvanian Mazon Creek Fauna, Illinois, U.S.A. Journal of Vertebrate Paleontology 7:123.Google Scholar
Sedgwick, A. 1894. On the law of development commonly known as von Baer's Law, and on the significance of ancestral rudiments in embryonic development. Quarterly Journal of Microscopical Science 36:3552.Google Scholar
Sharman, A. C., and Holland, P. W. H. 1998. Estimation of Hox gene cluster number in lampreys. International Journal of Developmental Biology 42:617620.Google Scholar
Sharpe, P. T. 1995. Homeobox genes and orofacial development. Connective Tissue Research 32:1725.Google Scholar
Sire, J.-Y., Allizard, F., Babiar, O., Buourguignon, J., and Quilhac, A. 1997. Scale development in zebrafish (Danio rerio). Journal of Anatomy 190:545561.Google Scholar
Smith, M. A., Bellairs, A. d. A., and Miles, A. E. W. 1953. Observations on the premaxillary dentition of snakes with special reference to the egg-tooth. Journal of Linnean Society (Zoology) 42:260268.Google Scholar
Smith, M. M., and Coates, M. I. 1998. Evolutionary origins of the vertebrate dentition: phylogenetic patterns and developmental evolution. European Journal of Oral Science 106(Suppl. 1):482500.Google Scholar
Smith, M. M., and Coates, M. I. 2000. Evolutionary origins of teeth and jaws: developmental models and phylogenetic patterns. Pp. 133151in Teaford, M. F., Ferguson, M. W. J., and Smith, M. M., eds. Development, function and evolution of teeth. Cambridge University Press, Cambridge.Google Scholar
Smith, M. M., and Coates, M. I. 2001. The evolution of vertebrate dentitions: phylogenetic pattern and developmental models. Pp. 223240in Ahlberg, 2001.Google Scholar
Smith, M. M., and Hall, B. K. 1990. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biological Reviews 65:277373.Google Scholar
Smith, M. M., and Hall, B. K. 1993. A developmental model for evolution of the vertebrate exoskeleton and teeth: the role of cranial and trunk neural crest. Evolutionary Biology 27:387448.Google Scholar
Stensiö, E. A. 1921. Triassic fishes from Spitsbergen, Part I. Adolf Holzhausen, Vienna.Google Scholar
Stensiö, E. A. 1947. The sensory lines and dermal bones of the cheek in fishes and amphibians. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1195.Google Scholar
Stensiö, E. A. 1958. Les Cyclostomes fossiles ou Ostracodermes. Pp. 173425 in Grassé, P.-P., ed. Traité de Zoologie. Masson, Paris.Google Scholar
Stensiö, E. A. 1961. Permian vertebrates. Pp. 231247in Raasch, G. O., ed. Geology of the Arctic. University of Toronto, Toronto.Google Scholar
Stensiö, E. A. 1962. Origine et nature des écailles placoïdes et des dents. In Lehman, J. P., ed. Problèmes actuels de paléontologie: (evolution des vertébrés). Colloques Internationaux du Centre National de la Recherche Scientifique 104:7585.Google Scholar
Stensiö, E. A. 1964. Les cyclostomes fossiles ou ostracodermes. Pp. 96382in Lehman, J.-P., ed. Traité de paléontologie, Vol. IV. L'origine des vertébrés: leur expansion dans les eaux douces et le milieu marin, Part 1, Agnathes. Masson et Cie, Paris.Google Scholar
Stensiö, E. A., and Ørvig, T. 1951–1957. On the scales of Edestids. Unpublished manuscript, Stensiö archives, Swedish Museum of Natural History, Stockholm.Google Scholar
Stock, D. W., Weiss, K. M., and Zhao, Z. 1997. Patterning of the mammalian dentition in development and evolution. Bio-Essays 19:481490.Google Scholar
Tabin, C. J., Carroll, S. B., and Panganiban, G. 1999. Out on a limb: parallels in vertebrate and invertebrate limb patterning and the origin of appendages. American Zoologist 39:650663.Google Scholar
Thesleff, I. 2000. Genetic basis of tooth development and dental defects. Acta Odontologica Scandinavia 58:191194.Google Scholar
Thesleff, I., Vaahtokari, A., and Partanen, A.-M. 1995. Regulation of organogenesis: common molecular mechanisms regulating the development of teeth and other organs. International Journal of Developmental Biology 39:3550.Google Scholar
Thomas, B. L., and Sharpe, P. T. 1998. Patterning of the murine dentition by homeobox genes. European Journal of Oral Science 106(Suppl. 1):4854.Google Scholar
Thomas, B. L., Ticker, A. S., Ferguson, C., Qiu, M., Rubenstein, J. L. R., and Sharpe, P. T. 1998. Molecular control of odontogenic patterning: positional dependent initiation and morphogenesis. European Journal of Oral Science 106(Suppl. 1):4447.Google Scholar
Thomson, K. S. 1993. Segmentation, the adult skull, and the problem of homology. Pp. 3668in Hanken, J. and Hall, B. K., eds. The skull, Vol. 3. Patterns of structural and systematic diversity. University of Chicago Press, Chicago.Google Scholar
Tucker, A. S., and Sharpe, P. T. 1999. Molecular genetics of tooth morphogenesis and patterning: the right shape in the right place. Journal of Dental Research 78:826834.Google Scholar
Tucker, A. S., Matthews, K. L., and Sharpe, P. T. 1998. Transformation of tooth type induced by inhibition of BMP signaling. Science 282:11361138.Google Scholar
Turing, A. M. 1952. The chemical basis of morphogenesis. Proceedings of the Royal Society of London B 237:3772.Google Scholar
Vaahtokari, A., Vainio, S., and Thesleff, I. 1991. Associations between transforming growth factor β1 RNA expression and epithelial-mesenchymal interactions during tooth morphogenesis. Development 113:985994.Google Scholar
Vainio, S., Karavanova, I., Jowett, A., and Thesleff, I. 1993. Identification of BMP-4 as a signal mediating secondary induction of between epithelial and mesenchymal tissues during early tooth development. Cell 75:4558.Google Scholar
Van Valen, L. M. 1964. Nature of the supernumerary molars of Otocyon. Journal of Mammalogy 45:284286.Google Scholar
Van Valen, L. M. 1982. Homology and causes. Journal of Morphology 173:305312.Google Scholar
Viallet, J. P., Prin, F., Olivera-Martinez, I., Hirsinger, E., Pourquié, O., and Dhouailly, D. 1998. Chick Delta-1 gene expression and the formation of the feather primordia. Mechanisms of Development 72:159168.Google Scholar
Wagner, G. P. 1989. The biological homology concept. Annual Review of Ecology and Systematics 20:5169.Google Scholar
Wagner, G. P. 1999. A research program for testing the biological homology concept. Pp. 125140in Bock, G. R. and Cardew, G., eds. Homology (Novartis Foundation Symposium 222). Wiley, Chichester, England.Google Scholar
Ward, H. C., and Leonard, E. M. 1952. Order of appearance of scales in the Black Crappie, Pomoxis nigromaculatus. Proceedings of the Oklahoma Academy of Science 33:138140.Google Scholar
Watson, D. M. S. 1921. On the coelacanth fish. Annals of the Magazine of Natural History 8:319337.Google Scholar
Watson, D. M. S. 1937. The acanthodian fishes. Philosophical Transactions of the Royal Society of London B 228:49146.Google Scholar
Weiss, K. M., Stock, D. W., and Zhao, Z. 1998. Dynamic interactions and the evolutionary genetics of dental patterning. Critical Reviews in Oral Biology and Medicine 9:369398.Google Scholar
Westoll, T. S. 1938. Ancestry of the tetrapods. Nature 141:127128.Google Scholar
Westoll, T. S. 1943. The origin of the tetrapods. Biological Reviews 18:7898.Google Scholar
Westoll, T. S. 1949. On the evolution of the Dipnoi. Pp. 121184in Jepsen, G. L. et al., eds. Genetics, paleontology, and evolution. Princeton University Press, Princeton, N.J.Google Scholar
Westoll, T. S. 1967. Radotina and other tesserate fishes. Journal of Linnean Society (Zoology) 47:8398.Google Scholar
Williamson, W. C. 1849. On the microscopic structure of the scales and dermal teeth of some ganoid and placoid fish. Philosophical Transactions of the Royal Society of London B 139:435475.Google Scholar
Williamson, W. C. 1851. Investigations into the structure and development of the scales and bones of fishes. Philosophical Transactions of the Royal Society of London B 141:643702.Google Scholar
Winge, H. 1883. Om Patteddyrenes Tandskifte isaer med Hensyn til Taendernes Former. Videnskabelige Meddelelser fra Dansk Naturhistoriska Forening 4:1569.Google Scholar
Wolpert, L. 1998. Pattern formation in epithelial development: the vertebrate limb and feather bud spacing. Philosophical Transactions of the Royal Society of London B 353:871875.Google Scholar
Yoshida, S. 1991. A scanning electron microscope study of vascular development in the dental papilla of prenatal rat molars. Anatomy and Embryology 183:379384.Google Scholar
Yoshida, S., and Ohshima, H. 1996. Distribution and organization of peripheral capillaries in dental pulp and their relationship to odontoblasts. Anatomical Record 245:313326.Google Scholar
Young, G. C. 1982. Devonian sharks from south-eastern Australia. Palaeontology 25:817843.Google Scholar
Zangerl, R. 1966. A new shark of the family Edestidae, Ornithoprion hertwigi from the Pennsylvanian Mecca and Logan Quarry Shales of Indiana. Fieldiana (Geology) 16:143.Google Scholar
Zangerl, R. 1981. Handbook of Paleoichthyology, Vol. 3A. Chondrichthyes I (Paleozoic Elasmobranchii). Gustav Fischer, Stuttgart.Google Scholar
Zhao, Z., Weiss, K. M., and Stock, D. W. 2000. Development and evolution of dentition patterns and their genetic basis. Pp. 152172in Teaford, M. F., Smith, M. M., and Ferguson, M. W. J., eds. Development, function and evolution of teeth. Cambridge University Press, Cambridge.Google Scholar
Zidek, J. 1985. Growth in Acanthodes (Acanthodii: Pisces) data and implications. Paläontologische Zeitschrift 59:147166.Google Scholar