Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-11T04:01:55.930Z Has data issue: false hasContentIssue false

Experimental disintegration of regular echinoids: roles of temperature, oxygen, and decay thresholds

Published online by Cambridge University Press:  08 April 2016

Susan M. Kidwell
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637
Tomasz Baumiller
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, Illinois 60637

Abstract

Laboratory experiments on regular echinoids indicate that low water temperatures retard organic decomposition far more effectively than anoxia, and that the primary role of anoxia in the preservation of articulated multi-element calcareous skeletons may be in excluding scavenging organisms. When tumbled at 20 rpm, specimens that were first allowed to decay for two days in warm seawater (30°C) disintegrated more than six times faster than specimens treated at room temperature (23°C) and more than an order of magnitude faster than specimens treated in cool water (11°C). In contrast, the effects of aerobic versus anerobic decay on disintegration rates were insignificant. The longer the period that specimens were allowed to decay before tumbling, the greater the rate at which specimens disintegrated, until a threshold time that appears to mark the decomposition of collagenous ligaments. This required a few days at 30°C, about two weeks at 23°C, and more than 4 weeks at 11°C for Strongylocentrotus. Up until this threshold, coronas disintegrate by a combination of cross-plate fractures and separation along plate sutures; cross-plate fractures thus can be taphonomic in origin and are not necessarily related to predation. Specimens decayed for longer-than-threshold periods of time disintegrate virtually instantaneously upon tumbling by sutural separation only. Undisturbed coronas can remain intact for months, sufficient time for epibiont occupation. Rates of disintegration were documented semi-quantitatively by recognizing seven stages of test disarticulation, and quantitatively by tensometer measures of test strength and toughness. The effects of temperature and oxygen on decay and the existence of a decay threshold in disintegration should apply at least in a qualitative sense to many other animals whose skeletons consist of multiple, collagen-bound elements.

Regular echinoids should still be perceived as taphonomically fragile organisms, but our results suggest the potential for latitudinal as well as bathymetric gradients in the preservation of fossil echinoid faunas. Echinoid preservation under any given set of conditions should also be a function of taxonomic differences in test construction (particularly stereom interlocking along plate sutures) as suggested by previous workers, although our experiments indicate that these effects should only be significant among post-threshold specimens. A survey of regular echinoids from Upper Cretaceous white chalk facies of Britain substantiates the basic experimental patterns, yielding examples of all disarticulation stages and significant taxonomic differences in quality of preservation. A diverse array of borers and encrusters on fossil coronas also corroborates the post-mortem persistence of some tests on mid-latitude seafloors.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aigner, T. 1985. Storm Depositional Systems. Dynamic Stratigraphy in Modern and Ancient Shallow-Marine Sequences. Lecture Notes in Earth Sciences 3. Springer-Verlag; Berlin.Google Scholar
Aigner, T., and Reineck, H.-E. 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana maritima 14:183215.Google Scholar
Allison, P. A. 1986. Soft-bodied animals in the fossil record: the role of decay in fragmentation during transport. Geology 14:979981.Google Scholar
Allison, P. A. 1988. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology 14:139154.Google Scholar
Aslin, C. J. 1968. Echinoid preservation in the Upper Estuarine Limestone of Blisworth, Northamptonshire. Geological Magazine 105:506518.CrossRefGoogle Scholar
Bantz, H.-U. 1969. Echinoidea aus Plattenkalken der Altmühlab und ihre Biostratinomie. Erlanger Geologische Abhandlunge 78:135.Google Scholar
Bloos, G. 1973. Ein Fund von Seeigeln der Gattung Diademopsis aus dem Hettangium Württembergs und ihr Lebensraum. Stuttgarter Beitrage Naturkunde B 5:125.Google Scholar
Brett, C. E., and Seilacher, A.In Press. Obrution deposits. In Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer-Verlag; Berlin.Google Scholar
Bromley, R. G. 1979. Chalk and bryozoan limestone: facies, sediments and depositional environments. Pp. 1632. In Birkelund, T., and Bromley, R. G. (eds.), Cretaceous-Tertiary Boundary Events Symposium. I. The Maastrichtian and Danian of Denmark. University of Copenhagen; Copenhagen.Google Scholar
Canfield, D. E. 1989. Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research 36:121138.CrossRefGoogle ScholarPubMed
Durham, J. W., Fell, H. B., Fischer, A. G., Kier, P. M., Melville, R. V., Pawson, D. L., and Wagner, C. D. 1966. Echinoids. Pp. U211U695. In Durham, J. W., et al. (eds.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and the University of Kansas; Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Ernst, G. 1966. Fauna, Ökologie, und Stratigraphie der mittel-santonen Schreibkreide von Lägerdorf (SW Holstein). Mitteil-ungen Geologischen Staats Institut Hamburg 35:115150.Google Scholar
Ernst, G., Hahnel, W., and Seibertz, E. 1973. Aktuopaläontologie und Merkmalsvariabilität bei mediterranen Echiniden und Rückschlüsse auf die Ökologie und Artumgrenzung fossiler Formen. Paläontologische Zeitschrift 47:188216.CrossRefGoogle Scholar
Foree, E. G., and McCarty, P. L. 1970. Anaerobic decomposition of algae. Environmental Science and Technology 4:842849.CrossRefGoogle Scholar
Greenstein, B. J. 1989a. The effects of taphonomic bias on the fossil record of echinoids. Geological Society of America Abstracts with Programs 21:70.Google Scholar
Greenstein, B. J. 1989b. Mass mortality of the West-Indian echinoid Diadema antillarum (Echinodermata: Echinoidea): a natural experiment in taphonomy. Palaios 4:487492.Google Scholar
Hakansson, E., Bromley, R., and Perch-Nielsen, K. 1974. Maastrichtian chalk of north-west Europe—a pelagic shelf sediment. Pp. 211233. In Hsü, K. J., and Jenkyns, H. C. (eds.), Pelagic Sediments: On Land and Under the Sea. International Association of Sedimentologists Special Publication 1. Blackwell Scientific Publications; Oxford.Google Scholar
Hancock, J. M. 1975. The sequence of facies in the Upper Cretaceous of northern Europe compared with that in the Western Interior. The Geological Association of Canada Special Paper 13:83118.Google Scholar
Jensen, M., and Thomsen, E. 1987. Ultrastructure, dissolution and “pyritization” of Late Quaternary and Recent echinoderms. Bulletin of the Geological Society of Denmark 36:275287.Google Scholar
Kennedy, W. J., and Garrison, R. E. 1975. Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311386.Google Scholar
Kidwell, S. M., and Baumiller, T. 1989. Post-mortem disintegration of echinoids: effects of temperature, oxygenation, tumbling, and algal coats. Abstracts of the 28th International Geological Congress (Washington, D.C.) 2:188189.Google Scholar
Kier, P. M. 1977. The poor record of the regular echinoid. Paleobiology 3:168174.Google Scholar
Lessios, H. A., Cubit, J. D., Robertson, D. R., Shulman, M. J., Parker, M. R., Garrity, S. D., and Levings, S. C. 1984. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3:172182.Google Scholar
Lewis, R. 1980. Taphonomy. Pp. 2739. In Broadhead, T. W., and Waters, J. W. (eds.), Echinoderms: Notes for a Short Course. University of Tennessee Department of Geological Sciences Studies in Geology 3:27–39.Google Scholar
Liddell, W. D. 1975. Recent crinoid biostratinomy. Geological Society of America Abstracts with Programs 7:1169.Google Scholar
Liddell, W. D., and Ohlhorst, A. L. 1986. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. Journal of Experimental Marine Biology and Ecology 95:271278.CrossRefGoogle Scholar
Linck, O. 1965. Stratigraphische, stratinomische und ökologische Betrachtungen zu Encrinus lilliformis Lamarck. Jahresheft geologische Landesamt Baden-Württemberg 7:123148.Google Scholar
McLain, D. H. 1974. Drawing contours from arbitrary data points. Computer Journal 17:318324.Google Scholar
Meyer, D. L. 1971. Post-mortem disintegration of Recent crinoids and ophiuroids under natural conditions. Geological Society of America Abstracts with Programs 3:645646.Google Scholar
Meyer, D. L., and Meyer, K. B. 1986. Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. Palaios 1:294302.CrossRefGoogle Scholar
Miller, K. B., Brett, C. E., and Parsons, K. M. 1988. The paleoecologic significance of storm-generated disturbance within a Middle Devonian muddy epeiric sea. Palaios 3:3552.Google Scholar
Mortimore, R. N. 1986. Stratigraphy of the Upper Cretaceous White Chalk of Sussex. Proceedings of the Geological Association 97:97139.Google Scholar
Nelson, C. S. 1978. Temperate shelf carbonate sediments in the Cenozoic of New Zealand. Sedimentology 25:737771.Google Scholar
Nelson, C. S., Keane, S. L., and Head, P. S. 1988. Non-tropical carbonate deposits on the modern New Zealand shelf. In Nelson, C. S. (ed.), Non-Tropical Shelf Carbonates—Modern and Ancient. Sedimentary Geology 60:7194.Google Scholar
Pinna, G. 1985. Exceptional preservation in the Jurassic of Osteno. Philosophical Transactions of the Royal Society of London B 311:171180.Google Scholar
Plotnick, R. E. 1986. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios 1:286293.Google Scholar
Plotnick, R. E., Baumiller, T., and Wetmore, K. L. 1988. Fossilization potential of the mud crab, Panopeus (Brachyura: Xan-thidae) and temporal variability in crustacean taphonomy. Palaeogeography, Palaeoclimatology, Palaeoecology 63:2743.CrossRefGoogle Scholar
Régis, M.-B. 1977. Organization microstructurale du stéreom de l'Echinoide Paracentrotus lividus (Lamarck) et ses éventuelles incidences physiologiques. Comptes Rendus de l'Academie des Sciences Paris Série D 285:189192.Google Scholar
Régis, M.-B. 1979. Particularités microstructurales du squelette de Paracentrotus lividus et Arbacia lixula: Rapports avec l'écologie et l'éthologie de ces échinoides. Marine Biology 54:373382.Google Scholar
Richards, F. A. 1957. Oxygen in the ocean. In Hedgpeth, J. W. (ed.), Treatise on Marine Ecology and Paleoecology. Vol. 1. Ecology. Geological Society of America Memoir 67:185238.Google Scholar
Saint-Seine, R. de. 1951. Un Cirripéde acrothoracique du Crétacé: Rogerella lecointrei, n.g., n.sp. Comptes Rendus de l'Académie des Sciences de Paris 233:10511053.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. University of Chicago Press; Chicago.Google Scholar
Seilacher, A. 1979. Constructural morphology of sand dollars. Paleobiology 5:191221.Google Scholar
Seilacher, A., Reif, W.-E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London B 311:523.Google Scholar
Smith, A. B. 1980. Stereom microstructure of the echinoid test. Special Papers in Palaeontology 25.Google Scholar
Smith, A. B. 1984. Echinoid Paleobiology. Allen and Unwin; London.Google Scholar
Smith, A. B., and Wright, C. W. 1989. British Cretaceous echinoids. Part 1. General introduction and Cidaroida. Monograph of the Palaeontological Society:1101(Publication No. 578, part of Volume 141 for 1987).Google Scholar
Smith, A. B., and Wright, C. W.In Press. British Cretaceous echinoids. Part 2. Echinothurioida, Diadematoida and Stirodonta (1; Calycina). Monograph of the Palaeontological Society: (Part of Volume 143 for 1989).Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. Second Edition. W. H. Freeman; San Francisco.Google Scholar
Strathmann, R. R. 1981. The role of spines in preventing structural damage to echinoid tests. Paleobiology 7:400406.Google Scholar
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H. 1942. The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, Inc.; New York.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press; Cambridge, Massachusetts.Google Scholar
Westrich, J. T., and Berner, R. A. 1984. The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnology and Oceanography 29:236249.CrossRefGoogle Scholar
Zullo, V. A., Kaar, R. F., Durham, J. W., and Allison, E. C. 1964. The echinoid genus Salenia in the eastern Pacific. Paleontology 7:331349.Google Scholar