Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-19T14:35:56.510Z Has data issue: false hasContentIssue false

Latitudinal body-mass trends in Oligo-Miocene mammals

Published online by Cambridge University Press:  03 May 2016

John D. Orcutt
Affiliation:
Department of Biology, Gonzaga University, Spokane, Washington 99258, U.S.A. E-mail:orcutt@gonzaga.edu.
Samantha S. B. Hopkins
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene, Oregon 97403, U.S.A. E-mail: shopkins@uoregon.edu.

Abstract

Paleecological data allow not only the study of trends along deep-time chronological transects but can also be used to reconstruct ecological gradients through time, which can help identify causal factors that may be strongly correlated in modern ecosystems. We have applied such an analysis to Bergmann’s rule, which posits a causal relationship between temperature and body size in mammals. Bergmann’s rule predicts that latitudinal gradients should exist during any interval of time, with larger taxa toward the poles and smaller taxa toward the equator. It also predicts that the strength of these gradients should vary with time, becoming weaker during warmer periods and stronger during colder conditions. We tested these predictions by reconstructing body-mass trends within canid and equid genera at different intervals of the Oligo-Miocene along the West Coast of North America. To allow for comparisons with modern taxa, body mass was reconstructed along the same transect for modern Canis and Odocoileus. Of the 17 fossil genera analyzed, only two showed the expected positive relationship with latitude, nor was there consistent evidence for a relationship between paleotemperature and body mass. Likewise, the strength of body-size gradients does not change predictably with climate through time. The evidence for clear gradients is ambiguous even in the modern genera analyzed. These results suggest that, counter to Bergmann’s rule, temperature alone is not a primary driver of body size and underscore the importance of regional-scale paleoecological analyses in identifying such drivers.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1998. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731734.CrossRefGoogle ScholarPubMed
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Koch, P. L., and Zachos, J. C.. 2000. Global climate change and North American mammal evolution. Paleobiology 26:259288.CrossRefGoogle Scholar
Ashton, K. G., Tracy, M. C., and de Quiroz, A.. 2000. Is Bergmann’s rule valid for mammals? American Naturalist 156:390415.CrossRefGoogle ScholarPubMed
Atwater, T., and Stock, J.. 1998. Pacific–North America plate tectonics of the Neogene southwestern United States: an update. International Geology Review 40:375402.CrossRefGoogle Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A.. 2000. Taphonomy and paleobiology. Paleobiology 26:103147.CrossRefGoogle Scholar
Bergmann, C. 1847. Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gottinger Studien 3:595708.Google Scholar
Berteaux, D., Humphries, M. M., Krebs, C. J., Lima, M., McAdam, A. G., Pettorelli, N., Réale, D., Saitoh, T., Tkadlec, E., Weladji, R. B., and Stenseth, N. C.. 2006. Constraints to projecting the effects of climate change on mammals. Climate Research 32:151158.CrossRefGoogle Scholar
Blackburn, T. M., and Hawkins, B. A.. 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27:715724.CrossRefGoogle Scholar
Bradshaw, W. E., and Holzapfel, C. M.. 2010. Light, time, and the physiology of biotic response to rapid climate change in animals. Annual Review of Physiology 72:147166.CrossRefGoogle ScholarPubMed
Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D.. 2005. Miocene Mammal Mapping Project (MIOMAP). http://www.ucmp.berkeley.edu/miomap.Google Scholar
Damuth, J. 1993. Cope’s rule, the island rule and the scaling of mammalian population density. Nature 365:748750.CrossRefGoogle ScholarPubMed
Davis, E. B., and Pyenson, N. D.. 2007. Diversity biases in terrestrial mammalian assemblages and quantifying the differences between museum collections and published accounts: a case study from the Miocene of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology 250:139149.CrossRefGoogle Scholar
Davis, E. B., McGuire, J. L., and Orcutt, J. D.. 2014. Ecological niche models of glacial refugia show consistent bias. Ecography 37:11331138.CrossRefGoogle Scholar
Erlinge, S. 1987. Why do European stoats Mustela erminea not follow Bergmann’s rule? Holarctic Ecology 10:3339.Google Scholar
Foote, M., and Raup, D. M.. 1996. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121140.CrossRefGoogle ScholarPubMed
Fraser, D., Hassall, C., Gorelick, R., and Rybczynski, N.. 2014. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PLoS One 9:e106499.CrossRefGoogle ScholarPubMed
Geist, V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65:103511038.CrossRefGoogle Scholar
Gingerich, P. D. 2003. Mammalian responses to climate change at the Paleocene–Eocene boundary: Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America Special Paper 369:463478.Google Scholar
Guralnick, R., and Pearman, P. B.. 2010. Using species occurrence databases to determine niche dynamics of montane and lowland species since the Last Glacial Maximum. Pp. 125135 in E. M. Spehn and C. Korner, eds. Data mining for global trends in mountain biodiversity. CRC Press, Boca Raton, Fla.Google Scholar
Hollister, E. B., Englewood, A. S., Hammett, A. J. M., Provin, T. L., Wilkinson, H. H., and Gentry, T. J.. 2010. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME Journal 4:829838.CrossRefGoogle ScholarPubMed
Hopkins, S. S. B. 2007. Causes of lineage decline in the Aplodontidae: testing for the influence of physical and biological change. Palaeogeography, Palaeoclimatology, Palaeoecology 246:331353.CrossRefGoogle Scholar
Humboldt, A., and Bonpland, A.. 1807. Essay on the Geography of Plants. Schoell, Paris.Google Scholar
Hunt, G., and Roy, K.. 2006. Climate change, body size evolution, and Cope’s Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences USA 103:13471352.CrossRefGoogle ScholarPubMed
Intergovernmental Panel on Climate Change 2014. Climate change 2014: synthesis report. IPCC, Geneva.Google Scholar
James, F. C. 1970. Geographic size variation in birds and its relationship to climate. Ecology 51:365390.CrossRefGoogle Scholar
Janis, C. M. 1990. Correlation of cranial and dental variables with body size in ungulates and macropodoids. Pp. 255300 in J. Damuth, and B. J. MacFadden, eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Janis, C. M., Damuth, J., and Theodor, J. M.. 2000. Miocene ungulates and terrestrial primary productivity: where have all the browsers gone? Proceedings of the National Academy of Sciences USA 97:78997904.CrossRefGoogle ScholarPubMed
Koch, P. L. 1986. Clinal geographic variation in mammals: implications for the study of chronoclines. Paleobiology 12:269281.CrossRefGoogle Scholar
Korpimäki, E., and Norrdahl, K.. 1989. Avian predation on mustelids in Europe 1: occurrence and effects on body size variation and life traits. Oikos 55:205215.CrossRefGoogle Scholar
Lillegraven, J. A. 1972. Ordinal and familial diversity of Cenozoic mammals. Taxon 21:261274.CrossRefGoogle Scholar
Liow, L. H., Fortelius, M., Bingham, E., Lintulaakso, K., Mannila, H., Flynn, L., and Stenseth, N. C.. 2008. Higher origination and extinction rates in larger mammals. Proceedings of the National Academy of Sciences USA 105:60976102.CrossRefGoogle ScholarPubMed
Lovegrove, B. G., and Mowoe, M. O.. 2013. The evolution of mammal body sizes: responses to Cenozoic climate change in North American mammals. Journal of Evolutionary Biology 26:13171329.CrossRefGoogle ScholarPubMed
Lyons, S. K., and Smith, F. A.. 2013. Macroecological patterns of body size in mammals across time and space. Pp. 116146 in F. A. Smith, and S. K. Lyons, eds. Body size: linking pattern and process across space, time, and taxonomy. University of Chicago Press, Chicago.CrossRefGoogle Scholar
MacFadden, B. J. 1992. Fossil horses: systematics, paleobiology, and evolution of the Family Equidae. Cambridge University Press, Cambridge.Google Scholar
MacFadden, B. J., Solounias, N., and Cerling, T. E.. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824827.CrossRefGoogle ScholarPubMed
Mayr, E. 1966. Animal species and evolution. Harvard University Press, Cambridge.Google Scholar
McNab, B. K. 1970. On the ecological significance of Bergmann’s rule. Ecology 52:845854.CrossRefGoogle Scholar
Meachen, J. A., and Samuels, J. X.. 2012. Evolution in coyotes (Canis latrans) in response to the megafaunal extinctions. Proceedings of the National Academy of Sciences USA 109:41914196.CrossRefGoogle Scholar
Meachen, J. A., Janowicz, A. C., Avery, J. E., and Sadleir, R. W.. 2014a. Ecological changes in coyotes (Canis latrans) in response to the Ice Age megafaunal extinctions. PLoS ONE 9:e116041.CrossRefGoogle Scholar
Meachen, J. A., O’Keefe, F. R., and Sadleir, R. W.. 2014b. Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. Journal of Evolutionary Biology 27:714723.CrossRefGoogle ScholarPubMed
Meiri, S., and Dayan, T.. 2003. On the validity of Bergmann’s rule. Journal of Biogeography 30:331351.CrossRefGoogle Scholar
Millar, J. S., and Hickling, G. J.. 1990. Fasting endurance and the evolution of mammalian body size. Functional Ecology 4:512.CrossRefGoogle Scholar
Orcutt, J. D., and Hopkins, S. S. B.. 2011. The canid fauna of the Juntura Formation (Late Clarendonian), Oregon. Journal of Vertebrate Paleontology 31:700706.CrossRefGoogle Scholar
Orcutt, J. D., and Hopkins, S. S. B.. 2013. Oligo-Miocene climate change and mammal body-size evolution in the northwest United States: a test of Bergmann’s Rule. Paleobiology 39:648661.CrossRefGoogle Scholar
Prothero, D. R. 2004. Did impacts, volcanic eruptions, or climate change affect mammalian evolution? Palaeogeography, Palaeoclimatology, Palaeoecology 214:283294.CrossRefGoogle Scholar
Retallack, G. J. 2001. Cenozoic expansion of grasslands and climatic cooling. Journal of Geology 109:407426.CrossRefGoogle Scholar
Retallack, G. J. 2007. Cenozoic paleoclimate on land in North America. Journal of Geology 115:271294.CrossRefGoogle Scholar
Rodríguez, M. Á., Olalla-Tárraga, M. Á., and Hawkins, B. A.. 2008. Bergmann’s rule and the geography mammal body size in the Western Hemisphere. Global Ecology and Biogeography 17:274283.CrossRefGoogle Scholar
Rose, P. J., Fox, D. L., Marcot, J., and Badgley, C.. 2011. Flat latitudinal gradient in Paleocene mammal richness suggests decoupling of climate and biodiversity. Geology 39:163166.CrossRefGoogle Scholar
Rosenzweig, M. L. 1968. The strategy of body size in mammalian carnivores. American Midland Naturalist 80:299315.CrossRefGoogle Scholar
Saarinen, J. J., Boyer, A. G., Brown, J. H., Costa, D. P., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., Okie, J. G., Sibly, R. M., Stevens, P. R., Theodor, J., Uhen, M. D., and Smith, F. A.. 2014. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proceedings of the Royal Society B 281:20132049.CrossRefGoogle ScholarPubMed
Smith, F. A., Boyer, A. G., Brown, J. H., Costa, D. P., Dayan, T., Ernest, S. K. M., Evans, A. R., Fortelius, M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., McCain, C., Okie, J. G., Saarinen, J. J., Sibly, R. M., Stephens, P. R., Theodor, J., and Uhen, M. D.. 2010. The evolution of maximum body size of terrestrial mammals. Science 330:12161219.CrossRefGoogle ScholarPubMed
Smith, K. F., and Brown, J. H.. 2002. Patterns of diversity, depth range and body size among pelagic fishes along a gradient of depth. Global Ecology and Biogeography 11:313322.CrossRefGoogle Scholar
Tedford, R. H., Albright, L. B. III, Barnosky, A. D., Ferrusquia-Villafranca, I., Hunt, R. M. Jr., Storer, J. E., Swisher, C. C. III, Voorhies, M. R., Webb, S. D., and Whistler, D. P.. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (late Oligocene through early Pliocene Epochs). Pp. 169231 in M. O. Woodburne, ed. Late Cretaceous and Cenozoic mammals of North America. Columbia University Press, New York.CrossRefGoogle Scholar
Tedford, R. H., Wang, X., and Taylor, B. E.. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 325:1218.CrossRefGoogle Scholar
Thurber, J. M., and Peterson, R. O.. 1991. Changes in body size associated with range expansion in the coyote (Canis latrans). Journal of Mammalogy 72:750755.CrossRefGoogle Scholar
Van Valkenburgh, B. 1988. Diversity of past and present guilds of large predatory mammals. Paleobiology 14:155173.CrossRefGoogle Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. Pp. 181205 in J. Damuth and B. J. MacFadden, eds. Body size in mammalian paleobiology. Cambridge University Press, Cambridge.Google Scholar
Vrba, E. S., and DeGusta, D.. 2004. Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philosophical Transactions of the Royal Society B 359:285293.CrossRefGoogle ScholarPubMed
Wang, X. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 221:1207.Google Scholar
Wang, X., Tedford, R. H., and Taylor, B. E.. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 243:1391.Google Scholar
Watt, C., Mitchell, S., and Salewski, V.. 2010. Bergmann’s rule; a concept cluster? Oikos 119:89100.CrossRefGoogle Scholar
Yang, J., Spicer, R. A., Spicer, T. E. V., and Li, C.. 2011. “CLAMP Online”: a new Web-based tool and its application to the terrestrial Paleocene and Neogene of North America. Paleobiology and Paleoenvironment 91:163183.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed