Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-09T23:16:50.547Z Has data issue: false hasContentIssue false

Spatial variations in Albinaria terebra land snail morphology in Crete (Pulmonata: Clausiliidae): constraints for older and younger colonizations?

Published online by Cambridge University Press:  08 February 2016

F. W. Welter-Schultes*
Affiliation:
Institut für Zoologie und Anthropologie der Universität, Berliner Straße 28, D-37073 Göttingen, Germany. E-mail: fwelter@gwdg.de

Abstract

A spatial approach was employed to test whether the conchological differentiation of the Recent land snail Albinaria terebra from southern central Crete (Greece) is decreased in areas that have been more recently colonized by the species. The eastern Mediterranean genus Albinaria has produced more than 120 species, probably in pre-Tortonian events of radiation. A. terebra occupies a compact range of 550 km2 consisting partly of late Cenozoic deposits of different ages, partly of pre-Cenozoic formations. The morphological study was based on 300 samples distributed over the entire range of the species. Shell size, shape, whorls, and teleoconch rib densities exhibited no evident correlation with environment but were subjected to considerable spatial variations. The differentiation, determined as the difference of the mentioned shell parameters between one population and another population 2–4 km distant, was found to increase continuously with the time (1–12 Myr) the land has been exposed to air. The populations with the highest degrees of spatial variation came from two areas that have never been submerged in the late Cenozoic, possibly the oldest populations of the species. It is plausible that the other areas were colonized by range expansion after late Neogene periods of tectonic uplift. The results are consistent with previous conclusions derived from molecular studies setting the radiation of Albinaria prior to the Tortonian and imply that we might be in possession of a new tool to detect information on the phylogeographic history of land snail species.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adepo-Gourene, B., Teugels, G. G., Risch, L. M., Hannssens, M. M., and Agnese, J. F. 1997. Morphological and genetic differentiation of 11 populations of the African catfish Chrysichthys nigrodigitatus (Siluroidei; Claroteidae), with consideration of their biogeography. Canadian Journal of Zoology 75:102109.CrossRefGoogle Scholar
Angelier, J. 1981. Analyse quantitative des relations entre déformation horizontale et mouvements verticaux: l'extension égéenne, la subsidence de la mer de Crète et la surrection de l'arc hellénique. Annales de Géophysique 37:327345.Google Scholar
Angelier, J., Lybéris, N., Pichon, X. Le, Barrier, E., and Huchon, P. 1982. The tectonic development of the Hellenic arc and the Sea of Crete: a synthesis. Tectonophysics 86:159196.CrossRefGoogle Scholar
Austerlitz, F., Jung-Muller, B., Godelle, B., and Gouyon, P. H. 1997. Evolution of coalescence times, genetic diversity and structure during colonization. Theoretical Population Biology 51:148164.CrossRefGoogle Scholar
Ayoutanti, A., Krimbas, C. B., Mylonas, M., Papathanasopoulou, A., and Sourdis, S. 1993. Inbreeding and population structure of taxa of the genus Albinaria in the Aegean region. Biologia Gallo-Hellenica 20:2530.Google Scholar
Bennett, S. J., and Hayward, M. D. 1999. Electrophoretic differentiation in isolated populations of Lolium rigidum Gaud. Molecular Ecology 8:123131.CrossRefGoogle Scholar
Boettger, O. 1878. Monographie der Clausiliensection Albinaria v. Vest. In Pfeiffer, L., ed. Novitates Conchologicae 5:39173, Tafeln 145–148.Google Scholar
Boettger, O. 1889. Verzeichnis der von Herrn E. v. Oertzen aus Griechenland und aus Kleinasien mitgebrachten Vertreter der Landschneckengattung Clausilia Drp. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 16(1):3168, 1 plate.Google Scholar
Cooper, A., and Cooper, R. A. 1995. The Oligocene bottleneck and New Zealand biota: genetic record of a past environmental crisis. Proceedings of the Royal Society of London B 261:293302.Google ScholarPubMed
Douris, V., Rodakis, G. C., Giokas, S., Mylonas, M., and Lecanidou, R. 1995. Mitochondrial DNA and morphological differentiation of Albinaria populations (Gastropoda: Clausiliidae). Journal of Molluscan Studies 61:6578.CrossRefGoogle Scholar
Douris, V., Cameron, R. A. D., Rodakis, G. C., and Lecanidou, R. 1998a. Mitochondrial phylogeography of the land snail Albinaria in Crete: long-term geological and short-term vicariance effects. Evolution 52:116125.Google ScholarPubMed
Douris, V., Giokas, S., Lecanidou, R., Mylonas, M., and Rodakis, G. C. 1998b. Phylogenetic analysis of mitochondrial DNA and morphological characters suggest a need for taxonomic re-evaluation within the Alopiinae (Gastropoda: Clausiliidae). Journal of Molluscan Studies 64:8192.CrossRefGoogle Scholar
Durka, W. 1999. Genetic diversity in peripheral and subcentral populations of Corrigiola litoralis L. (Illecebraceae). Heredity 83:476484.CrossRefGoogle ScholarPubMed
Fairbanks, R. G. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-sea ocean circulation. Nature 342:637642.CrossRefGoogle Scholar
Fedorov, V., Jaarola, M., and Fredga, K. 1996. Low mitochondrial DNA variation and recent colonization of Scandinavia by the wood lemming Myopus schisticolor. Molecular Ecology 5:577581.CrossRefGoogle Scholar
Ford, B. A., McQueen, D. A. R., Starr, J. R., and Naczi, R. F. C. 1998. The impact of species-specific traits and phylogenetic relatedness on allozyme diversity in Carex sect. Phyllostachys (Cyperaceae). Plant Systematics and Evolution 212:1329.CrossRefGoogle Scholar
Fortuin, A. R. 1978. Late Cenozoic history of eastern Crete and implications for the geology and geodynamics of the southern Aegean area. Geologie en Mijnbouw 57:451464.Google Scholar
Gittenberger, E. 1991. What about non-adaptive radiation? Biological Journal of the Linnean Society 43:263272.CrossRefGoogle Scholar
Giunchi, C., Kiratzi, A., Sabadini, R., and Louvari, E. 1996. A numerical model of the Hellenic subduction zone: active stress field and sea-level changes. Geophysical Research Letters 23:24582488.CrossRefGoogle Scholar
Goodfriend, G. A. 1986. Variation in land snail shell form and size and its causes: a review. Systematic Zoology 35:204223.CrossRefGoogle Scholar
Gullberg, A., Olsson, M., and Tegelstrom, H. 1998. Colonization, genetic diversity, and evolution in the Swedish sand lizard, Lacerta agilis (Reptilia, Squamata). Biological Journal of the Linnean Society 65:257277.Google Scholar
Hatzoglou, E., Rodakis, G. C., and Lecanidou, R. 1995. Complete sequence and gene organization of the mitochondrial genome of the land snail Albinaria coerulea. Genetics 140:13531366.CrossRefGoogle ScholarPubMed
Hedren, M., and Prentice, H. C. 1996. Allozyme variation and racial differentiation in Swedish Carex lepidocarpa s. l. (Cyperaceae). Biological Journal of the Linnean Society 59:179200.Google Scholar
Heller, J. 1975. The taxonomy, distribution and faunal succession of Buliminus (Pulmonata: Enidae) in Israel. Zoological Journal of the Linnean Society 57:157.CrossRefGoogle Scholar
Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 59:247276.CrossRefGoogle Scholar
Hitchings, S. P., and Beebee, T. J. C. 1996. Persistence of British natterjack toad Bufo calamita Laurenti (Anura: Bufonidae) populations despite low genetic diversity. Biological Journal of the Linnean Society 57:6980.Google Scholar
Hollingsworth, P. M., and Dickson, J. H. 1997. Genetic variation in rural and urban populations of Epipactis helleborine (L.) Crantz. (Orchidaceae) in Britain. Botanical Journal of the Linnean Society 123:321331.Google Scholar
Ibrahim, K. M., Nichols, R. A., and Hewitt, G. M. 1996. Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282291.CrossRefGoogle Scholar
IGME (Institoútou Geologikón ke Metallevtikón Erevnón). 1959–1996. Geologikós chártis tis Elládos. 1:50000. Set of consecutively published sheets. Athens.Google Scholar
Jacobshagen, V. 1986. Geologie von Griechenland. Beiträge zur Regionalen Geologie der Erde 19:1363.Google Scholar
Jarne, P. 1995. Mating system, bottlenecks and genetic polymorphism in hermaphroditic animals. Genetical Research 65:193207.CrossRefGoogle Scholar
Johnson, M. S. 1988. Founder effects and geographic variation of the land snail Theba pisana. Heredity 61:133142.CrossRefGoogle Scholar
Kemperman, T. C. M. 1992. Systematics and evolutionary history of the Albinaria species from the Ionian islands of Kephallinia and Ithaka (Gastropoda Pulmonata: Clausiliidae). . University of Leiden, Leiden.Google Scholar
Kemperman, T. C. M., and Gittenberger, E. 1988. On morphology, function and taxonomic importance of the shell ribs in Clausiliidae (Mollusca, Gastropoda, Pulmonata), with special reference to those in Albinaria. Basteria 52:77100.Google Scholar
Koch, M., Mummenhoff, K., and Hurka, H. 1998. Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochemical Systematics and Ecology 26:823838.CrossRefGoogle Scholar
Komma, M., and Seitz, A. 1984. Genetic polymorphism and its ecological background in tephritid populations (Diptera: Tephritidae). Pp. 143158in Wöhrmann, K. and Loeschcke, V., eds. Population biology and evolution. Springer, Berlin/Heidelberg.Google Scholar
Konnert, M., and Bergmann, F. 1995. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196:1930.CrossRefGoogle Scholar
Lagercrantz, U., and Ryman, N. 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:3853.Google ScholarPubMed
Lambeck, K. 1995. Late Pleistocene and Holocene sea-level change in Greece and south-western Turkey: a separation of eustatic, isostatic and tectonic contributions. Geophysical Journal International 122:10221044.CrossRefGoogle Scholar
Lecanidou, R., Douris, V., and Rodakis, G. C. 1994. Novel features of metazoan mtDNA revealed from sequence analysis of three mitochondrial DNA segments of the land snail Albinaria turrita (Gastropoda: Clausiliidae). Journal of Molecular Evolution 38:369382.CrossRefGoogle ScholarPubMed
Le Corre, V., and Kremer, A. 1998. Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping-stone model. Journal of Evolutionary Biology 11:495512.Google Scholar
Loosjes, F. E. 1955. Eine Clausilien-Ausbeute von Kreta. Sitzungsberichte, Österreichische Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Abteilung I 164:855885.Google Scholar
Meulenkamp, J. E. 1971. The Neogene in the southern Aegean area. Opera Botanica 30:512.Google Scholar
Paetkau, D., and Strobeck, C. 1996. Mitochondrial DNA and the phylogeography of Newfoundland black bears. Canadian Journal of Zoology 74:192196.CrossRefGoogle Scholar
Peters, J. M., and Huson, W. J. 1985. The Pliny and Strabo trenches (eastern Mediterranean): integration of seismic reflection data and seabeam bathymetric maps. Marine Geology 64:117.CrossRefGoogle Scholar
Quinn, T. P., Nielsen, J. L., Gan, C., Unwin, M. J., Wilmot, R., Guthrie, C., and Utter, F. M. 1996. Origin and genetic structure of chinook salmon, Oncorhynchus tshawytscha, transplanted from California to New Zealand: allozyme and mtDNA evidence. Fishery Bulletin (Washington DC) 94:506521.Google Scholar
Rensch, B. 1932. Über die Abhängigkeit der Grösse, des relativen Gewichtes und der Oberflächenstruktur der Landschneckenschalen von den Umweltsfaktoren. (Ökologische Molluskenstudien I). Zeitschrift für Morphologie und Ökologie der Tiere 25:757807.CrossRefGoogle Scholar
Schilthuizen, M. 1994a. Differentiation and hybridisation in a polytypic snail. . University of Leiden, Leiden.Google Scholar
Schilthuizen, M. 1994b. Reproductive isolation in parapatric snails of the genus Albinaria. Biological Journal of the Linnean Society 52:317324.CrossRefGoogle Scholar
Schilthuizen, M. 1995. Life on the edge: a hybrid zone in Albinaria hippolyti (Gastropoda: Clausiliidae) from Crete. Biological Journal of the Linnean Society 54:111138.Google Scholar
Schilthuizen, M., and Gittenberger, E. 1994. Parallel evolution of an sAat-‘hybrizyme’ in hybrid zones in Albinaria hippolyti (Boettger). Heredity 73:244248.CrossRefGoogle Scholar
Schilthuizen, M., and Gittenberger, E. 1996. Allozyme variation in some Cretan Albinaria: paraphyletic species as natural phenomena. Pp. 301311in Taylor, J., ed. Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Schilthuizen, M., and Lombaerts, M. 1994. Population structure and levels of gene flow in the Mediterranean land snail Albinaria corrugata (Pulmonata: Clausiliidae). Evolution 48:577586.CrossRefGoogle ScholarPubMed
Schilthuizen, M., Welter-Schultes, F. W., and Wiese, V. 1993. A revision of the polytypic Albinaria hippolyti (Boettger, 1878) from Crete (Gastropoda Pulmonata: Clausiliidae). Zoologische Mededelingen 67:137157.Google Scholar
Schilthuizen, M., Gittenberger, E., and Gultyaev, A. P. 1995. Phylogenetic relationships inferred from the sequence and secondary structure of ITS1 rRNA in Albinaria and putative Isabellaria species (Gastropoda, Pulmonata, Clausiliidae). Molecular Phylogenetics and Evolution 4:457462.CrossRefGoogle ScholarPubMed
Sinclair, W. T., Morman, J. D., and Ennos, R. A. 1999. The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Molecular Ecology 8:8388.CrossRefGoogle Scholar
Taymaz, T., Jackson, J., and McKenzie, D. 1991. Active tectonics of the north and central Aegean Sea. Geophysical Journal International 106:433490.CrossRefGoogle Scholar
Utelli, A. B., Roy, B. A., and Baltisberger, M. 1999. History can be more important than ‘pollination syndrome’ in determining the genetic structure of plant populations: the case of Aconitum lycoctonum (Ranunculaceae). Heredity 82:574584.CrossRefGoogle ScholarPubMed
Van Andel, T. H., and Shackleton, J. C. 1982. Late paleolithic and mesolithic coastlines of Greece and the Aegean. Journal of Field Archaeology 9:445454.Google Scholar
Wade, M. J., McKnight, M. L., and Shaffer, H. B. 1994. The effects of kin-structured colonization on nuclear and cytoplasmic genetic diversity. Evolution 48:11141120.Google ScholarPubMed
Wagner, A. 1923. Ergänzungen und Erläuterungen zur Systematik der Clausiliiden. II. Neue Formen und Arten des Genus Albinaria ex rect. mea. Prace Zoologiczne Polskiego Panstwowego Muzeum Przyrodniczego 2(1):18.Google Scholar
Welter-Schultes, W. 1992. Notes on the taxonomy of Albinaria of Nisos Dia, Crete (Gastropoda: Clausiliidae). Biologia Gallo-Hellenica 19:5561.Google Scholar
Welter-Schultes, F. W. 1998a. Albinaria in central and eastern Crete: distribution map of the species (Gastropoda: Clausiliidae). Journal of Molluscan Studies 64:275279.CrossRefGoogle Scholar
Welter-Schultes, F. W. 1998b. Human-dispersed land snails in Crete, with special reference to Albinaria (Gastropoda: Clausiliidae). Biologia Gallo-Hellenica 24:83106.Google Scholar
Welter-Schultes, F. W. 1999. Die vier Albinaria-Arten westlich von Kalí Liménes. Schriften zur Malakozoologie 13:6678.Google Scholar
Welter-Schultes, F. W. 2000a. The paleogeography of late Neogene central Crete inferred from the sedimentary record combined with Albinaria land snail biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology 157:2744.CrossRefGoogle Scholar
Welter-Schultes, F. W. 2000b. Species and lower level taxa introduced in Albinaria from 1792–1999 (Gastropoda: Clausiliidae). Biologia Gallo-Hellenica 26:340.Google Scholar
Welter-Schultes, F. W. 2000c. The pattern of geographical and altitudinal variation in the land snail Albinaria idaea from Crete (Gastropoda: Clausiliidae). Biological Journal of the Linnean Society 71:237250.CrossRefGoogle Scholar
Welter-Schultes, F. W. 2000d. Approaching the genus Albinaria in Crete from an evolutionary point of view (Pulmonata: Clausiliidae). Schriften zur Malakozoologie 16:1208.Google Scholar
Welter-Schultes, F. W., and Williams, M. R. 1999. History, island area and habitat availability determine land snail species richness of Aegean islands. Journal of Biogeography 26:239249.CrossRefGoogle Scholar
Westerbergh, A., and Saura, A. 1994. Genetic differentiation in endemic Silene (Caryophyllaceae) on the Hawaiian Islands. American Journal of Botany 81:14871493.CrossRefGoogle Scholar