Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-npccv Total loading time: 1.348 Render date: 2022-10-04T15:00:43.736Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Article contents

Cytological, molecular and life cycle characterization of Anostracospora rigaudi n. g., n. sp. and Enterocytospora artemiae n. g., n. sp., two new microsporidian parasites infecting gut tissues of the brine shrimp Artemia

Published online by Cambridge University Press:  04 June 2013

NICOLAS OLIVIER RODE*
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
JULIE LANDES
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
EVA J. P. LIEVENS
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
ELODIE FLAVEN
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
ADELINE SEGARD
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
ROULA JABBOUR-ZAHAB
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
YANNIS MICHALAKIS
Affiliation:
MIVEGEC – UMR 5290, CNRS-IRD-UM1-UM2, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
PHILIP AGNEW
Affiliation:
MIVEGEC – UMR 5290, CNRS-IRD-UM1-UM2, IRD, 911 Avenue Agropolis, B.P. 64501, 34394 Montpellier Cedex 5, France
CHRISTIAN P. VIVARÈS
Affiliation:
Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, BP 10448, F-63000 Clermont-Ferrand, France LMGE – UMR 6023, CNRS, F-63177 Aubière, France
THOMAS LENORMAND
Affiliation:
CEFE – UMR 5175, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France
*
*Corresponding author. CEFE – UMR 5175, 1919 route de Mende, 34293 Montpellier cedex 5, France. E-mail: nicolas.rode@ens-lyon.org

Summary

Two new microsporidia, Anostracospora rigaudi n. g., n. sp., and Enterocytospora artemiae n. g., n. sp. infecting the intestinal epithelium of Artemia parthenogenetica Bowen and Sterling, 1978 and Artemia franciscana Kellogg, 1906 in southern France are described. Molecular analyses revealed the two species belong to a clade of microsporidian parasites that preferentially infect the intestinal epithelium of insect and crustacean hosts. These parasites are morphologically distinguishable from other gut microsporidia infecting Artemia. All life cycle stages have isolated nuclei. Fixed spores measure 1·3×0·7 μm with 5–6 polar tube coils for A. rigaudi and 1·2×0·9 μm with 4 polar tube coils for E. artemiae. Transmission of both species is horizontal, most likely through the ingestion of spores released with the faeces of infected hosts. The minute size of these species, together with their intestinal localization, makes their detection and identification difficult. We developed two species-specific molecular markers allowing each type of infection to be detected within 3–6 days post-inoculation. Using these markers, we show that the prevalence of these microsporidia ranges from 20% to 75% in natural populations. Hence, this study illustrates the usefulness of molecular approaches to study prevalent, but cryptic, infections involving microsporidian parasites of gut tissues.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, M. D., Vossbrinck, C. R., Maddox, J. V. and Undeen, A. H. (1994). Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. Journal of Invertebrate Pathology 30, 509518.Google Scholar
Becnel, J. J. (1992). Horizontal transmission and subsequent development of Amblyospora californica (Microsporida: Amblyosporidae) in the intermediate and definitive hosts. Diseases of Aquatic Organisms 13, 1728.CrossRefGoogle Scholar
Cali, A. and Garhy, M. E. L. (1991). Ultrastructural study of the development of Pleistophora schubergi Zwölfer, 1927 (Protozoa, Microsporida) in larvae of the spruce budworm, Choristoneura fumiferana and its subsequent taxonomic change to the genus Endoreticulatus. Journal of Eukaryotic Microbiology 38, 271278.Google Scholar
Canning, E. U. (1960). Two new microsporidian parasites of the winter moth, Operophtera brumata (L.). Journal of Parasitology 46, 755763.CrossRefGoogle Scholar
Canning, E. U. and Vávra, J. (2000). Phylum Microsporidia Balbiani, 1882. In The Illustrated Guide to the Protozoa (ed. Lee, J. J., Leedale, G. F. and Bradbury, P.), pp. 39126. Allen Press, Lawrence, KS.Google Scholar
Canning, E. U. and Curry, A. (2004). Further observations on the ultrastructure of Cystosporogenes operophterae (Canning, 1960) (phylum Microsporidia) parasitic in Operophtera brumata L. (Lepidoptera, Geometridae). Journal of Invertebrate Pathology 87, 17.CrossRefGoogle Scholar
Canning, E. U., Barker, R. J., Nicholas, J. P. and Page, A. M. (1985). The ultrastructure of three microsporidia from winter moth, Operophtera brumata (L.), and the establishment of a new genus Cystosporogenes n. g. for Pleistophora operophterae (Canning, 1960). Systematic Parasitology 7, 213225.CrossRefGoogle Scholar
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Chilmonczyk, S., Cox, W. T. and Hedrick, R. P. (1991). Enterocytozoon salmonis n. sp.: an intranuclear microsporidium from salmonid fish. Journal of Eukaryotic Microbiology 38, 264269.Google ScholarPubMed
Codreanu, R. (1957). Sur quatre espèces nouvelles de microsporidies parasites de l'Artemia salina (L.) de Roumanie. Annales Des Sciences Naturelles Zoologiques 19, 561572.Google Scholar
Codreanu, R. and Codreanu-Balcescu, D. (1980). Parasitoses massives des populations du crustacé Artemia salina et du chironomide Halliella noctivaga dominantes dans la faune du lac sursalé Tékirghiol. Muz. St. Constata, Pontus Euxinus Studiisi Cercetari 1, 305314.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.CrossRefGoogle ScholarPubMed
Desportes, I., Charpentier, Y. L., Galian, A., Bernard, F., Cochand-Priollet, B., Lavergne, A., Ravisse, P. and Modigliani, R. (1985). Occurrence of a new microsporidan: Enterocytozoon bieneusi n. g., n. sp., in the enterocytes of a human patient with AIDS. Journal of Eukaryotic Microbiology 32, 250254.Google Scholar
Dunn, A. and Hatcher, M. (1997). Prevalence, transmission and intensity of infection by a microsporidian sex ratio distorter in natural Gammarus duebeni populations. Parasitology 114, 231236.CrossRefGoogle Scholar
Ebert, D. (1994). Genetic differences in the interactions of a microsporidian parasite and four clones of its cyclically parthenogenetic host. Parasitology 108, 1116.CrossRefGoogle Scholar
Ebert, D. (2005). Ecology, Epidemiology, and Evolution of Parasitism in Daphnia [Internet], National Center for Biotechnology Information, Bethesda, MD, USA. http://www.ncbi.nlm.nih.gov/books/NBK2036/.Google Scholar
Ebert, D., Lipsitch, M. and Mangin, K. L. (2000). The effect of parasites on host population density and extinction: experimental epidemiology with Daphnia and six microparasites. American Naturalist 156, 459477.CrossRefGoogle ScholarPubMed
Escobedo-Bonilla, C., Alday-Sanz, V., Wille, M., Sorgeloos, P., Pensaert, M. and Nauwynck, H. (2008). A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. Journal of Fish Diseases 31, 118.CrossRefGoogle ScholarPubMed
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Freeman, M. A. and Sommerville, C. (2009). Desmozoon lepeophtherii n. gen., n. sp. (Microsporidia: Enterocytozoonidae) infecting the salmon louse Lepeophtheirus salmonis (Copepoda: Caligidae). Parasites and Vectors 2, 115.CrossRefGoogle Scholar
Gatehouse, H. S. and Malone, L. A. (1998). The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. Journal of Invertebrate Pathology 71, 97105. doi: 10.1006/jipa.1997.4737.CrossRefGoogle ScholarPubMed
Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704. doi: 10.1080/10635150390235520.CrossRefGoogle ScholarPubMed
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307321.CrossRefGoogle ScholarPubMed
Hatakeyama, Y. and Hayasaka, S. (2002). Specific amplification of microsporidian DNA fragments using multiprimer PCR. Japan Agricultural Research Quarterly 36, 97102.CrossRefGoogle Scholar
Hogg, J., Ironside, J., Sharpe, R., Hatcher, M., Smith, J. and Dunn, A. (2002). Infection of Gammarus duebeni populations by two vertically transmitted microsporidia; parasite detection and discrimination by PCR–RFLP. Parasitology 125, 5963.CrossRefGoogle ScholarPubMed
Issi, I. V., Tokarev, Y. S., Voronin, V. N., Seliverstova, E. V., Pavlova, O. A. and Dolgikh, V. V. (2010). Ultrastructure and molecular phylogeny of Mrazekia macrocyclopis sp. n. (Microsporidia, Mrazekiidae), a microsporidian parasite of Macrocyclops albidus (Jur.) (Crustacea, Copepoda). Acta Protozoologica 49, 7584.Google Scholar
Kleespies, R. G., Vossbrinck, C. R., Lange, M. and Jehle, J. A. (2003). Morphological and molecular investigations of a microsporidium infecting the European grape vine moth, Lobesia botrana Den. et Schiff., and its taxonomic determination as Cystosporogenes legeri nov. comb. Journal of Invertebrate Pathology 83, 240248.CrossRefGoogle ScholarPubMed
Larsson, J. I. R., Ebert, D., Vávra, J. and Voronin, V. (1996). Redescription of Pleistophora intestinalis Chatton, 1907, a microsporidian parasite of Daphnia magna and Daphnia pulex, with establishment of the new genus Glugoides (Microspora, Glugeidae). European Journal of Protistology 32, 251259.CrossRefGoogle Scholar
Larsson, J. I. R., Ebert, D. and Vávra, J. (1997). Ultrastructural study and description of Ordospora colligata gen. et sp. nov. (Microspora, Ordosporidae fam. nov.), a new microsporidian parasite of Daphnia magna (Crustacea, Cladocera). European Journal of Protistology 33, 432443.CrossRefGoogle Scholar
Li, Q., Zhang, J., Chen, Y. and Yang, F. (2003). White spot syndrome virus (WSSV) infectivity for Artemia at different developmental stages. Diseases of Aquatic Organisms 57, 261264.CrossRefGoogle ScholarPubMed
Martinez, M. A., Larsson, J. I. R. and Morales, J. (1989). Morphological, pathological and ecological data of a microsporidium of the genus Nosema on Artemia. Aquaculture Europe'89. Short Communications. Special Publication of E. A. C. 10, 161163.Google Scholar
Martinez, M. A., Vivarès, C. P., Rocha, R. D., Fonseca, A. C., Andral, B. and Bouix, G. (1992). Microsporidiosis on Artemia (Crustacea, Anostraca): light and electron microscopy of Vavraia anostraca sp. nov. (Microsporidia, Pleistophoridae) in the Brazilian solar salterns. Aquaculture 107, 229237.CrossRefGoogle Scholar
Martinez, M. A., Vivarès, C. P. and Bouix, G. (1993). Ultrastructural study of Endoreticulatus durforti n. sp., a new microsporidian parasite of the intestinal epithelium of Artemia (Crustacea, Anostraca). Journal of Eukaryotic Microbiology 40, 677687.CrossRefGoogle Scholar
Martinez, M. A., Larsson, J. I. R., Amat, F. and Vivarès, C. P. (1994). Cytological study of Nosema artemiae (Codreanu, 1957) Sprague, 1977 (Microsporidia, Nosematidae). Archiv für Protistenkunde 144, 8389.CrossRefGoogle Scholar
Molina, J. M., Sarfati, C., Beauvais, B., Lémann, M., Lesourd, A., Ferchal, F., Casin, I., Lagrange, P., Modigliani, R. and Derouin, F. (1993). Intestinal microsporidiosis in human immunodeficiency virus-infected patients with chronic unexplained diarrhea: prevalence and clinical and biologic features. Journal of Infectious Diseases 167, 217221.CrossRefGoogle ScholarPubMed
Muñoz, J., Green, A., Figuerola, J., Amat, F. and Rico, C. (2008). Characterization of polymorphic microsatellite markers in the brine shrimp Artemia (Branchiopoda, Anostraca). Molecular Ecology Resources 9, 547550.CrossRefGoogle Scholar
Nylund, S., Nylund, A., Watanabe, K., Arnesen, C. E. and Karlsbakk, E. (2010). Paranucleospora theridion n. gen., n. sp. (Microsporidia, Enterocytozoonidae) with a life cycle in the salmon louse (Lepeophtheirus salmonis, Copepoda) and Atlantic salmon (Salmo salar). Journal of Eukaryotic Microbiology 57, 95114.CrossRefGoogle Scholar
Otti, O. and Schmid-Hempel, P. (2008). A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecological Entomology 33, 577582.CrossRefGoogle Scholar
Ovcharenko, M. and Wita, I. (2005). The ultrastructural study of Nosema artemiae (Codreanu, 1957) (Microsporidia: Nosematidae). Acta Protozoologica 44, 3341.Google Scholar
Rode, N. O., Lievens, E. J. P., Flaven, E., Segard, A., Jabbour-Zahab, R., Sanchez, M. I. and Lenormand, T. (2013). Why join groups? Lessons from parasite-manipulated Artemia. Ecology Letters 16, 493501.CrossRefGoogle ScholarPubMed
Rode, N. O., Lievens, E. J. P., Flaven, E., Segard, A., Jabbour-Zahab, R. and Lenormand, T.Cryptic microsporidian parasites differentially affect invasive and native Artemia spp. International Journal for Parasitology, in press.Google Scholar
Ryan, J. A. and Kohler, S. L. (2010). Virulence is context-dependent in a vertically transmitted aquatic host–microparasite system. International Journal for Parasitology 40, 16651673.CrossRefGoogle Scholar
Silveira, H. and Canning, E. U. (1995). Vittaforma corneae n. comb. for the human microsporidium Nosema corneum Shadduck, Meccoli, Davis & Font, 1990, based on its ultrastructure in the liver of experimentally infected athymic mice. Journal of Eukaryotic Microbiology 42, 158165.CrossRefGoogle ScholarPubMed
Sokolova, Y. Y., Lange, C. E., Mariottini, Y. and Fuxa, J. R. (2009). Morphology and taxonomy of the microsporidium Liebermannia covasacrae n. sp. from the grasshopper Covasacris pallidinota (Orthoptera, Acrididae). Journal of Invertebrate Pathology 101, 3442.CrossRefGoogle Scholar
Stentiford, G. D., Bateman, K. S., Longshaw, M. and Feist, S. W. (2007). Enterospora canceri n. gen., n. sp., intranuclear within the hepatopancreatocytes of the European edible crab Cancer pagurus. Diseases of Aquatic Organisms 75, 6172. doi: 10.3354/dao075061.CrossRefGoogle ScholarPubMed
Stentiford, G. D., Bateman, K. S., Small, H. J., Moss, J., Shields, J. D., Reece, K. S. and Tuck, I. (2010). Myospora metanephrops (n. g., n. sp.) from marine lobsters and a proposal for erection of a new order and family (Crustaceacida; Myosporidae) in the Class Marinosporidia (Phylum Microsporidia). International Journal for Parasitology 40, 14331446. doi: 10.1016/j.ijpara.2010.04.017.CrossRefGoogle Scholar
Stentiford, G. D., Bateman, K. S., Dubuffet, A., Chambers, E. and Stone, D. M. (2011). Hepatospora eriocheir (Wang and Chen, 2007) gen. et comb. nov. infecting invasive Chinese mitten crabs (Eriocheir sinensis) in Europe. Journal of Invertebrate Pathology 108, 156166. doi: 10.1016/j.jip.2011.07.008.CrossRefGoogle Scholar
Stirnadel, H. A. and Ebert, D. (1997). Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. Journal of Animal Ecology 66, 212222.CrossRefGoogle Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121.CrossRefGoogle ScholarPubMed
Texier, C., Vidau, C., Viguès, B., El Alaoui, H. and Delbac, F. (2010). Microsporidia: a model for minimal parasite–host interactions. Current Opinion in Microbiology 13, 443449. doi: 10.1016/j.mib.2010.05.005.CrossRefGoogle ScholarPubMed
Thomarat, F., Vivares, C. P. and Gouy, M. (2004). Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fast-evolving genes. Journal of Molecular Evolution 59, 780791. doi: 10.1007/s00239-004-2673-0.CrossRefGoogle ScholarPubMed
Tokarev, Y. S., Voronin, V. N., Seliverstova, E. V., Pavlova, O. A. and Issi, I. V. (2010). Life cycle, ultrastructure, and molecular phylogeny of Crispospora chironomi g. n. sp. n. (Microsporidia: Terresporidia), a parasite of Chironomus plumosus L. (Diptera: Chironomidae). Parasitology Research 107, 13811389.CrossRefGoogle Scholar
Tourtip, S., Wongtripop, S., Stentiford, G. D., Bateman, K. S., Sriurairatana, S., Chavadej, J., Sritunyalucksana, K. and Withyachumnarnkul, B. (2009). Enterocytozoon hepatopenaei sp. nov. (Microsporida: Enterocytozoonidae), a parasite of the black tiger shrimp Penaeus monodon (Decapoda: Penaeidae): Fine structure and phylogenetic relationships. Journal of Invertebrate Pathology 102, 2129. doi: 10.1016/j.jip.2009.06.004.CrossRefGoogle ScholarPubMed
Vossbrinck, C. R. and Debrunner-Vossbrinck, B. A. (2005). Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitologica 52, 131142.CrossRefGoogle ScholarPubMed
Vossbrinck, C. R., Andreadis, T. G. and Weiss, L. M. (2004). Phylogenetics: taxonomy and the microsporidia as derived fungi. In Opportunistic Infections: Toxoplasma, Sarcocystis, and Microsporidia, Vol. 9 (ed. Lindsay, D. S. and Weiss, L. M.), pp. 189213. Springer, New York, USA.CrossRefGoogle Scholar
Vossbrinck, C. R., Baker, M. D., Didier, E. S., Debrunner-Vossbrinck, B. A. and Shadduck, J. A. (1993). Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction. Journal of Eukaryotic Microbiology 40, 354362.CrossRefGoogle ScholarPubMed
Wang, C. Y., Solter, L. F., T'sui, W. H. and Wang, C. H. (2005). An Endoreticulatus species from Ocinara lida (Lepidoptera: Bombycidae) in Taiwan. Journal of Invertebrate Pathology 89, 123135.CrossRefGoogle Scholar
Weigl, S., Körner, H., Petrusek, A., Seda, J., Wolinska, J., Becnel, J., Andreadis, T., Wittner, M., Weiss, L. and Ben-Ami, F. (2012). Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology–Cambridge 139, 870880.CrossRefGoogle ScholarPubMed
Weiss, L. M. (2005). The first united workshop on microsporidia from invertebrate and vertebrate hosts. Folia Parasitologica 52, 17.CrossRefGoogle ScholarPubMed
Weiss, L. M., Zhu, X., Cali, A., Tanowitz, H. B. and Wittner, M. (1994). Utility of microsporidian rRNA in diagnosis and phylogeny – a review. Folia Parasitologica 41, 8190.Google ScholarPubMed
Supplementary material: PDF

Rode Supplementary Material

Appendix

Download Rode Supplementary Material(PDF)
PDF 474 KB
19
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cytological, molecular and life cycle characterization of Anostracospora rigaudi n. g., n. sp. and Enterocytospora artemiae n. g., n. sp., two new microsporidian parasites infecting gut tissues of the brine shrimp Artemia
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Cytological, molecular and life cycle characterization of Anostracospora rigaudi n. g., n. sp. and Enterocytospora artemiae n. g., n. sp., two new microsporidian parasites infecting gut tissues of the brine shrimp Artemia
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Cytological, molecular and life cycle characterization of Anostracospora rigaudi n. g., n. sp. and Enterocytospora artemiae n. g., n. sp., two new microsporidian parasites infecting gut tissues of the brine shrimp Artemia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *