Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T20:58:10.468Z Has data issue: false hasContentIssue false

Marine parasites as biological tags in South American Atlantic waters, current status and perspectives

Published online by Cambridge University Press:  28 January 2014

D. M. P. CANTATORE
Affiliation:
Laboratorio de Parasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina
J. T. TIMI*
Affiliation:
Laboratorio de Parasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina
*
*Corresponding author: Laboratorio de Parasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600 Mar del Plata, Argentina. E-mail: jtimi@mdp.edu.ar

Summary

Many marine fisheries in South American Atlantic coasts (SAAC) are threatened by overfishing and under serious risk of collapsing. The SAAC comprises a diversity of environments, possesses a complex oceanography and harbours a vast biodiversity that provide an enormous potential for using parasites as biological tags for fish stock delineation, a prerequisite for the implementation of control and management plans. Here, their use in the SAAC is reviewed. Main evidence is derived from northern Argentine waters, where fish parasite assemblages are dominated by larval helminth species that share a low specificity, long persistence and trophic transmission, parasitizing almost indiscriminately all available fish species. The advantages and constraints of such a combination of characteristics are analysed and recommendations are given for future research. Shifting the focus from fish/parasite populations to communities allows expanding the concept of biological tags from local to regional scales, providing essential information to delineate ecosystem boundaries for host communities. This new concept arose as a powerful tool to help the implementation of ecosystem-based approaches to fisheries management, the new paradigm for fisheries science. Holistic approaches, including parasites as biological tags for stock delineation will render valuable information to help insure fisheries and marine ecosystems against further depletion and collapse.

Type
Fisheries
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, E. M., Mianzán, H. W., Guerrero, R. A., Favero, M. and Bava, J. (2004). Marine fronts at the continental shelves of austral South America physical and ecological process. Journal of Marine Systems 44, 83105. doi: 10.1016/j.jmarsys.2003.09.005.CrossRefGoogle Scholar
Acha, E. M., Mianzán, H., Guerrero, R. A., Carreto, J., Giberto, D., Montoya, N. and Carnigan, M. (2008). An overview of physical and ecological processes in the Río de la Plata Estuary. Continental Shelf Research 28, 15791588.CrossRefGoogle Scholar
Acha, E. M., Orduna, M., Rodrigues, K., Militelli, M. I. and Braverman, M. (2012). Caracterización de la zona de “El Rincón” (Provincia de Buenos Aires) como área de reproducción de peces costeros. Revista de Investigación y Desarrollo Pesquero 21, 3143.Google Scholar
Alarcos, A. J. and Timi, J. T. (2012). Parasite communities in three sympatric flounder species (Pleuronectiformes: Paralichthyidae): similar ecological filters driving toward repeatable assemblages. Parasitology Research 110, 21552166. doi: 10.1007/s00436-011-2741-5.CrossRefGoogle ScholarPubMed
Alarcos, A. J. and Timi, J. T. (2013). Stocks and seasonal migrations of the flounder Xystreurys rasile as indicated by its parasites. Journal of Fish Biology 83, 531541. doi: 0.1111/jfb.12190.Google Scholar
Amante, C. and Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. March, 2009.Google Scholar
Anderson, M. J. and Robinson, J. (2003). Generalized discriminant analysis based on distances. Australian and New Zealand Journal of Statistics 45, 301318. doi: 10.1111/1467-842X.00285.CrossRefGoogle Scholar
Anderson, M. J. and Willis, T. J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511525.CrossRefGoogle Scholar
Anderson, M. J., Gorley, R. N. and Clarke, K. R. (2008). PERMANOVA+for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK.Google Scholar
Arana, P., Alvarez Perez, J. A. and Pezzuto, P. R. (2009). Deep-sea fisheries off Latin America: an introduction. Latin American Journal of Aquatic Research 37, 281284. doi: 10.3856/vol37-issue3-fulltext-1.Google Scholar
Arkhipkin, A., Brickle, P. and Laptikhovsky, V. (2013). Links between marine fauna and oceanic fronts on the Patagonian Shelf and Slope. Arquipelago. Life and Marine Sciences 30, 1937.Google Scholar
Artigas, L., Vendeville, P., Leopold, M., Guiral, D. and Ternon, J. F. (2003). Marine biodiversity in French Guiana: estuarine, coastal and shelf ecosystems under the influence of the Amazonian waters. Gayana 67, 302326. doi: 10.4067/S0717-65382003000200013.Google Scholar
Bakun, A. and Parrish, R. H. (1991). Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. Journal of Marine Science 48, 343361. doi: 10.1093/icesjms/48.3.343.Google Scholar
Baldwin, R. E., Banks, M. A. and Jacobson, K. C. (2012). Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Reviews in Fish Biology and Fisheries 22, 137156. doi: 10.1007/s11160-011-9227-5.Google Scholar
Begg, G. A. and Waldman, J. R. (1999). An holistic approach to fish stock identification. Fisheries Research 43, 3544. doi: 10.1016/S0165-7836(99)00065-X.Google Scholar
Begg, G. A., Friedland, K. D. and Pearce, J. B. (1999). Stock identification and its role in stock assessment and fisheries management: an overview. Fisheries Research 43, 18. doi: 10.1016/S0165-7836(99)00062-4.Google Scholar
Bertolotti, M. I., Verazay, G. A., Errazti, E., Pagani, A. N. and Buono, J. J. (2001). Flota pesquera Argentina. Evolución durante el periodo 1960–1998, con una actualización al 2000. In El Mar Argentino y sus Recursos Pesqueros, Tomo II: Evolución de la flota pesquera Argentina, artes de pesca y dispositivos selectivos (ed. Boschi, E. E.), pp. 953. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.Google Scholar
Bogazzi, E., Baldoni, A., Rivas, A., Martos, P., Reta, R., Orensanz, J. M., Lasta, M., Dell'Arciprete, P. and Werner, F. (2005). Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fisheries Oceanography 14, 359376. doi: 10.1111/j.1365-2419.2005.00340.x.Google Scholar
Braicovich, P. E. and Timi, J. T. (2008). Parasites as biological tags for stock discrimination of the Brazilian flathead, Percophis brasiliensis in the south-west Atlantic. Journal of Fish Biology 73, 557571. doi: 10.1111/j.1095-8649.2008.01948.x.CrossRefGoogle Scholar
Braicovich, P. E. and Timi, J. T. (2010). Seasonal stability in parasite assemblages of the Brazilian flathead, Percophis brasiliensis (Perciformes: Percophidae): predictable tools for stock identification. Folia Parasitologica 57, 206212.Google Scholar
Braicovich, P. E., Luque, J. L. and Timi, J. T. (2012). Geographical patterns of parasite infracommunities in the rough scad, Trachurus lathami Nichols off southwestern Atlantic Ocean. Journal of Parasitology 98, 768771. doi: 10.1645/GE-2950.1.Google Scholar
Brickle, P. and MacKenzie, K. (2007). Parasites as biological tags for Eleginops maclovinus (Teleostei: Eleginopidae) around the Falkland Islands. Journal of Helminthology 81, 147153. doi: 10.1017/S0022149X07750514.CrossRefGoogle ScholarPubMed
Brickle, P., MacKenzie, K. and Pike, A. (2005). Parasites of the Patagonian toothfish, Dissostichus eleginoides Smitt 1898, in different parts of the Subantarctic. Polar Biology 28, 663671. doi: 10.1007/s00300-005-0737-2.CrossRefGoogle Scholar
Brickle, P., MacKenzie, K. and Pike, A. (2006). Variations in the parasite fauna of the Patagonian toothfish (Dissostichus eleginoides Smitt, 1898) with length, season and depth of habitat around the Falkland Islands. Journal of Parasitology 92, 195204. doi: 10.1645/GE-539R.1.Google Scholar
Briggs, J. C. and Bowen, B. W. (2012). A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39, 1230. doi: 10.1111/j.1365-2699.2011.02613.x.CrossRefGoogle Scholar
Brouat, C. and Duplantier, J.-M. (2007). Host habitat patchiness and the distance decay of similarity among gastro-intestinal nematode communities in two species of Mastomys (southeastern Senegal). Oecologia 152, 715720. doi: 10.1007/s00442-007-0680-8.Google Scholar
Brown, J., Brickle, P. and Scott, B. E. (2013). The parasite fauna of the Patagonian toothfish Dissostichus eleginoides off the Falkland Islands. Journal of Helminthology 87, 501509. doi: 10.1017/S0022149X12000636.Google Scholar
Caddy, J. F. (1999). Fisheries management in the twenty-first century: will new paradigms apply? Reviews in Fish Biology and Fisheries 9, 143.Google Scholar
Cadrin, S. X., Friedland, K. D. and Waldman, J. R. (2005). Stock Identification Methods: Applications in Fishery Science. Elsevier Academic Press, Amsterdam, the Netherlands.Google Scholar
Carballo, M. C., Cremonte, F., Navone, G. T. and Timi, J. T. (2012). Similarity in parasite community structure to trace latitudinal migrations of Odontesthes smitti (Pisces: Atherinopsidae) in Argentinean coasts. Journal of Fish Biology 80, 1528. doi: 10.1111/j.1095-8649.2011.03125.x.Google Scholar
Carozza, C., Perrotta, R., Cotrina, C., Bremec, C. and Aubone, A. (2001). Análisis de la flota dedicada a la pesca de corvina rubia y distribución de tallas de desembarque. Periodo 1992–1995. Informe Técnico Interno, INIDEP 41, 117.Google Scholar
Carozza, C., Fernandez Aráoz, N., Ruarte, C., Massa, A., Hozbor, N. and Jaureguizar, A. (2004). Definición de una zona de reproducción y cría de especies demersales costeras en la costa sur de la provincia de Buenos Aires. Informe Técnico Interno, INIDEP 84, 124.Google Scholar
Clarke, K. R. and Gorley, R. N. (2006). PRIMER V6: User Manual/Tutorial. PRIMER-E, Plymouth, UK.Google Scholar
Clarke, K. R. and Warwick, R. M. (2001). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edn. PRIMER-E, Plymouth, UK.Google Scholar
Cousseau, M. B. and Figueroa, D. E. (2010). Ictiogeografía. In Ictiología: aspectos fundamentales, la vida de los peces (ed. Cousseau, M. B., Díaz de Astarloa, J. M., Ehrlich, M. D., Fabré, N. N. and Figueroa, D. E.), pp. 505537. Editorial de la Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.Google Scholar
Díaz de Astarloa, J. M. and Bolasina, S. N. (1992). Análisis estadístico de los caracteres morfométricos y merísticos de la pescadilla de red (Cynoscion striatus) en el área comprendida entre 34° y 39°S. Frente Marítimo 11, 5762.Google Scholar
Di Giácomo, E. E., Calvo, J., Perier, M. R. and Morriconi, E. (1993). Spawning aggregations of Merluccius hubbsi, in Patagonian waters: evidence for a single stock? Fisheries Research 16, 916. doi: 10.1016/0165-7836(93)90106-H.CrossRefGoogle Scholar
Esch, G. W. and Fernández, J. C. (1993). A Functional Biology of Parasitism, 1st Edn. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations (2012). The State of World Fisheries and Aquaculture 2012. FAO Fisheries and Aquaculture Department, Rome, Italy.Google Scholar
Freire, K. M. F. (2003). A database of landing data on Brazilian marine fisheries from 1980 to 2000. Fisheries Centre Research Reports 11, 181189.Google Scholar
Freire, K. M. F. and Pauly, D. (2010). Fishing down Brazilian marine food webs, with emphasis on the east Brazil large marine ecosystem. Fisheries Research 105, 5762. doi: 10.1016/j.fishres.2010.02.008.Google Scholar
Garbin, L. E., Mattiucci, S., Paoletti, M., Díaz, J. I., Nascetti, G. and Mavone, G. T. (2013). Molecular identification and larval morphological description of Contracaecum pelagicum (Nematoda: Anisakidae) from the anchovy Engraulis anchoita (Engraulidae) and fish-eating birds from the Argentine North Patagonian Sea. Parasitology International 62, 309319. doi: 10.1016/j.parint.2013.03.001.CrossRefGoogle ScholarPubMed
García, S. M., Zerbi, A., Aliaume, C., Do Chi, T. and Lasserre, G. (2003). The Ecosystem Approach to Fisheries. Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook 443. FAO Fisheries Technical Paper, Rome, Italy.Google Scholar
Garraffo, Z. D., Johns, W. E., Chassignet, E. P. and Goñi, G. J. (2003). North Brazil Current rings and transport of southern waters in a high resolution numerical simulation of the North Atlantic. In Interhemispheric Water Exchange in the Atlantic Ocean (ed. Malanotte-Rizzoli, P. M. and Goni, G. J.), pp. 375409. Elsevier Oceanographic Series, 68, Elsevier, New York, NY, USA.CrossRefGoogle Scholar
George-Nascimento, M., Moscoso, D., Niklitschek, E. and González, K. (2011). Geographical variation of parasite communities in the southern blue whiting Micromesistius australis around southern South America. Revista de Biología Marina y Oceanografía 4, 5358.CrossRefGoogle Scholar
González, R. A. and Kroeck, M. A. (2000). Enteric helminths of the shortfin squid Illex argentinus in San Matías Gulf (Argentina) as stock discriminants. Acta Parasitologica 45, 8993.Google Scholar
González, R., Narvarte, M. and Caille, G. (2007). An assessment of the sustainability of the hake Merluccius hubbsi artisanal fishery in San Matías Gulf, Patagonia, Argentina. Fisheries Research 87, 5867. doi: 10.1016/j.fishres.2007.06.010.CrossRefGoogle Scholar
Grafton, R. Q., Hilborn, R., Squires, D. and Williams, M. J. (2010). Marine conservation and fisheries management: at the crossroads. In Handbook of Marine Fisheries Conservation and Management (ed. Grafton, R. Q., Hilborn, R., Squires, D., Tait, M. and Williams, M. J.), pp. 319. Oxford University Press, New York, NY, USA.Google Scholar
Guégan, J.-F., Lambert, A., Lévêque, C., Combes, C. and Euzet, L. (1992). Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia 90, 197204. doi: 10.1007/BF00317176.Google Scholar
Guerrero, R. A. and Piola, A. R. (1997). Masas de agua en la plataforma continental. In El Mar Argentino y sus Recursos Pesqueros Tomo I: Antecedentes históricos de las exploraciones en el mar y las características ambientales (ed. Boschi, E. E.), pp. 107118. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.Google Scholar
Guerrero, R. A., Acha, E. M., Framinan, M. B. and Lasta, C. A. (1997). Physical oceanography of the Río de la Plata Estuary, Argentina. Continental Shelf Research 17, 727742. doi: 10.1016/S0278-4343(96)00061-1.Google Scholar
Hansen, J. E. and Madirolas, M. (1996). Distribución, evaluación acústica y estructura poblacional de la anchoíta. Resultados de las campañas del año 1993. Revista de Investigación y Desarrollo Pesquero 10, 521.Google Scholar
Hoffmann, J., Núñez, M. and Piccolo, M. (1997). Características climáticas del océano Atlántico sudoccidental. In El Mar Argentino y sus Recursos Pesqueros Tomo I: Antecedentes históricos de las exploraciones en el mar y las características ambientales (ed. Boschi, E.), pp. 163193. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.Google Scholar
Incorvaia, I. S. and Hernández, D. R. (2006). Nematodos parásitos como indicadores biológicos de Macruronus magellanicus . Informe Técnico Interno, INIDEP 61, 117.Google Scholar
Jaureguízar, A. J. and Milessi, A. C. (2008). Assessing the sources of the fishing down marine food web process in the Argentinean-Uruguayan Common Fishing Zone. Scientia Marina 72, 2536.Google Scholar
Jaureguízar, A. J., Menni, R., Lasta, C. and Guerrero, R. (2006). Fish assemblages of the northern Argentine coastal system: spatial patterns and their temporal variations. Fisheries Oceanography 15, 326344. doi: 10.1111/j.1365-2419.2006.00405.x.Google Scholar
Lafferty, K. (2008). Ecosystem consequences of fish parasites. Journal of Fish Biology 73, 20832093. doi: 10.1111/j.1095-8649.2008.02059.x.Google Scholar
Lanfranchi, A. L., Rossin, M. A. and Timi, J. T. (2009). Parasite infracommunities of a specialized marine fish species in a compound community dominated by generalist parasites. Journal of Helminthology 83, 373378. doi: 10.1017/S0022149X09390069.CrossRefGoogle Scholar
Lester, R. J. G. (1990). Reappraisal of the use of parasites for fish stock identification. Australian Journal of Marine and Freshwater Research 41, 855864. doi: 10.1071/MF9900855.Google Scholar
Lester, R. J. G. and MacKenzie, K. (2009). The use and abuse of parasites as stock markers for fish. Fisheries Research 97, 12. doi: 10.1016/j.fishres.2008.12.016.Google Scholar
Lucas, A. J., Guerrero, R. A., Mianzán, H. W., Acha, E. M. and Lasta, C. A. (2005). Coastal oceanographic regimes of the Northern Argentine Continental Shelf (34–43°S). Estuarine, Coastal and Shelf Science 65, 405420. doi: 10.1016/j.ecss.2005.06.015.Google Scholar
Luque, J. L. and Poulin, R. (2004). Use of fish as intermediate hosts by helminth parasites: a comparative analysis. Acta Parasitologica 49, 353361.Google Scholar
Luque, J. L., Mouillot, D. and Poulin, R. (2004). Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671682. doi: 10.1017/S0031182004005050.Google Scholar
Luque, J. L., Cordeiro, A. S. and Oliva, M. E. (2010). Metazoan parasites as biological tags for stock discrimination of white mouth croaker Micropogonias furnieri from south-western Atlantic Ocean waters. Journal of Fish Biology 76, 591600. doi: 10.1111/j.1095-8649.2009.02515.x.Google Scholar
Machado Schiaffino, G., Juanes, F. and Garcia-Vazquez, E. (2011). Identifying unique populations in long-dispersal marine species: gulfs as priority conservation areas. Biological Conservation 144, 330338. doi: 10.1016/j.biocon.2010.09.010.Google Scholar
MacKenzie, K. (1983). Parasites as biological tags in fish population studies. Advances in Applied Biology 7, 251331. doi: 10.1016/S1383-5769(98)80066-4.Google Scholar
MacKenzie, K. (2002). Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124 (Suppl.), S153S163. doi: 10.1017/S0031182002001518.CrossRefGoogle ScholarPubMed
MacKenzie, K. and Abaunza, P. (1998). Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 4556. doi: 10.1016/S0165-7836(98)00116-7.CrossRefGoogle Scholar
MacKenzie, K. and Abaunza, P. (2005). Parasites as biological tags. In Stock Identification Methods: Applications in Fisheries Science (ed. Cadrin, S. X., Friedland, K. D. and Waldman, J. R.), pp. 211226. Elsevier Academic Press, San Diego, CA, USA.Google Scholar
MacKenzie, K. and Longshaw, M. (1995). Parasites of the hakes Merluccius australis and M. hubbsi in the waters around the Falkland Islands, southern Chile and Argentina, with an assessment of their potential value as biological tags. Canadian Journal of Fisheries and Aquatic Sciences 52, S213S224.Google Scholar
MacKenzie, K., Brickle, P., Hemmingsen, W. and George-Nascimento, M. (2013). Parasites of hoki, Macruronus magellanicus, in the Southwest Atlantic and Southeast Pacific Oceans, with an assessment of their potential value as biological tags. Fisheries Research 145, 15. doi: 10.1016/j.fishres.2013.03.008.Google Scholar
Mangel, M. and Levin, P. S. (2005). Regime, phase and paradigm shifts: making community ecology the basic science for fisheries. Philosophical Transactions of the Royal Society of London. Series B 360, 95105. doi: 10.1098/rstb.2004.1571.Google Scholar
Marcogliese, D. J. (2001). Pursuing parasites up the food chain: implications of food web structure and function on parasite communities in aquatic systems. Acta Parasitologica 46, 8293.Google Scholar
Marcogliese, D. J. (2002). Food webs and the transmission of parasites to marine fish. Parasitology 124, 8399. doi: 10.1017/S003118200200149X.Google Scholar
Marcogliese, D. J. (2008). Interdisciplinarity in marine parasitology. In Proceedings of the International Workshop on Marine Parasitology: Applied Aspects of Marine Parasitology (ed. Afonso-Dias, I., Menezes, G., MacKenzie, K. and Eiras, J. C.). Arquipélago. Life and Marine Sciences. Supplement 6.Google Scholar
Marrari, M., Viñas, M. D., Martos, P. and Hernández, D. (2004). Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34–41°S) during austral spring: relationship with the hydrographic conditions. Journal of Marine Science 61, 667679. doi: 10.1016/j.icesjms.2004.03.025.Google Scholar
Mattiucci, S. and Nascetti, G. (2008). Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Advances in Parasitology 66, 47168. doi: 10.1016/S0065-308X(08)00202-9.Google Scholar
Menoret, A. and Ivanov, V. A. (2009). New name for Progrillotia dollfusi Carvajal et Rego, 1983 (Cestoda: Trypanorhyncha): description of adults from Squatina guggenheim (Chondrichthyes: Squatiniformes) off the coast of Argentina. Folia Parasitologica 56, 284294.Google Scholar
Milessi, A. C., Arancibia, H., Neira, S. and Defeo, O. (2005). The mean trophic level of Uruguayan landings during the period 1990–2001. Fisheries Research 74, 223231. doi: 10.1016/j.fishres.2005.02.002.CrossRefGoogle Scholar
Militelli, M. I. (2011). Paralichthys patagonicus spawning areas and reproductive potential in the Bonaerense Coastal Zone, Argentina (34–42°S). Latin American Journal of Aquatic Research 39, 131137. doi: 10.3856/vol39-issue1-fulltext-12.Google Scholar
Militelli, M. I. and Macchi, G. J. (2006). Spawning and fecundity of striped weakfish, Cynoscion guatucupa, in the Río de la Plata estuary and adjacent marine waters, Argentina-Uruguay. Fisheries Research 77, 110114. doi: 10.1016/j.fishres.2005.08.004.Google Scholar
Miloslavich, P., Klein, E., Díaz, J. M., Hernandez, C. E., Bigatti, G., Campos, L., Artigas, F., Castillo, J., Penchaszadeh, P., Neill, P., Carranza, A., Retana, M., Díaz de Astarloa, J. M., Lewis, M., Yorio, P., Piriz, M., Rodriguez, G., Yoneshigue-Valentin, Y., Gamboa, L. and Martín, A. (2011). Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS ONE 6, e14631. doi: 10.1371/journal.pone.0014631.Google Scholar
Mosquera, J., de Castro, M. and Gómez-Gesteira, M. (2003). Parasites as biological tags of fish populations: advantages and limitations. Comments on Theoretical Biology 8, 6991. doi: 10.1080/08948550390181612.CrossRefGoogle Scholar
Mullon, C., Fréon, P. and Cury, P. (2005). The dynamics of collapse in world fisheries. Fish and Fisheries 6, 111120. doi: 10.1111/j.1467-2979.2005.00181.x.Google Scholar
Navone, G. T., Sardella, N. H. and Timi, J. T. (1998). Larvae and adults of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda: Anisakidae) in fishes and crustaceans in the South West Atlantic. Parasite 5, 127136.Google Scholar
Niklitschek, E. J., Secor, D. H., Toledo, P., Lafon, A. and George-Nascimento, M. (2010). Segregation of SE Pacific and SW Atlantic southern blue whiting stocks: integrating evidence from complementary otolith microchemistry and parasite assemblage approaches. Environmental Biology of Fishes 89, 399413. doi: 10.1007/s10641-010-9695-9.Google Scholar
Ocampo Reinaldo, M., González, R., Williams, G., Storero, L. P., Romero, M. A., Narvarte, M. and Gagliardini, D. A. (2013). Spatial patterns of the Argentine hake Merluccius hubbsi and oceanographic processes in a semi-enclosed Patagonian ecosystem. Marine Biology Research 9, 394406. doi: 10.1080/17451000.2012.739700.CrossRefGoogle Scholar
Pájaro, M. (2002). Alimentación de la anchoíta argentina (Engraulis anchoita Hubbs y Marini, 1935) (Pisces: Clupeiformes) durante la época reproductiva. Revista de Investigación y Desarrollo Pesquero 15, 111125.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. and Torres, F. (1998). Fishing down marine foods webs. Science 279, 860863. doi: 10.1126/science.279.5352.860.Google Scholar
Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, J. R., Walters, C. J., Watson, R. and Zeller, D. (2002). Towards sustainability in world fisheries. Nature 418, 689695. doi: 10.1038/nature01017.Google Scholar
Perez, J. A. A., Pezzuto, P. R., Schwingel, P. R., Lopes, F. R. A. and Rodrigues-Ribeiro, M. (2003). Deep-sea fishery off Southern Brazil: recent trends of the Brazilian fishing industry. Journal of Northwest Atlantic Fishery Science 31, 118.Google Scholar
Perrotta, R. G. and Fernández-Giménez, A. F. (1996). Estudio preliminar sobre la edad y el crecimiento del pez palo (Percophis brasiliensis Quoy et Gaimard 1824). Informe Técnico Interno, INIDEP 10, 2536.Google Scholar
Pikitch, E. K. (2012). The risks of overfishing. Science 338, 474475. doi: 10.1126/science.1229965.Google Scholar
Piola, A. R. and Falabella, V. (2008). The Patagonian Sea. In Atlas of the Patagonian Sea: Species and Spaces, 1st Edn. (ed. Falabella, V., Campagna, C. and Croxall, J.), p. 304. Ciudad Autónoma de Buenos Aires, Wildlife Conservation Society Argentina. BirdLife International, Cambridge.Google Scholar
Piola, A. R. and Rivas, A. L. (1997). Corrientes en la plataforma continental. In El Mar Argentino y Sus Recursos Pesqueros Tomo I: Antecedentes históricos de las exploraciones en el mar y las características ambientales (ed. Boschi, E. E.), pp. 119132. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina.Google Scholar
Poulin, R. (1999). The functional importance of parasites in animal communities: many roles at many levels? International Journal for Parasitology 29, 903914. doi: 10.1016/S0020-7519(99)00045-4.Google Scholar
Poulin, R. (2000). Variation in the intraspecific relationship between fish length and intensity of parasitic infection: biological and statistical causes. Journal of Fish Biology 56, 123137. doi: 0022-1112/00/010123+15.CrossRefGoogle Scholar
Poulin, R. (2003). The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography 30, 16091615. doi: 10.1046/j.1365-2699.2003.00949.x.Google Scholar
Poulin, R. (2004). Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology 5, 423434. doi: 10.1016/j.baae.2004.08.003.Google Scholar
Poulin, R. and Morand, S. (1999). Geographical distances and the similarity among parasite communities of conspecific host populations. Parasitology 119, 369374. doi: 10.1017/S0031182099004795.Google Scholar
Poulin, R. and Valtonen, E. T. (2001). Nested assemblages resulting from host size variation: the case of endoparasite communities in fish hosts. International Journal for Parasitology 31, 11941204. doi: 10.1016/S0020-7519(01)00262-4.Google Scholar
Power, A. M., Balbuena, J. A. and Raga, J. A. (2005). Parasite infracommunities as predictors of harvest location of bogue (Boops boops L.): a pilot study using statistical classifiers. Fisheries Research 72, 229239. doi: 10.1016/j.fishres.2004.10.001.Google Scholar
Quinn, T. J. II and Collie, J. S. (2005). Sustainability in single species population models. Philosophical Transactions of the Royal Society of London. Series B 360, 147162. doi: 10.1098/rstb.2004.1577.Google Scholar
Rico, M. R. (2010). Pesquería de lenguados en el ecosistema costero bonaerense al norte de 39°S. Frente Marítimo 21, 129135.Google Scholar
Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514527. doi: 10.2307/3545569.Google Scholar
Rohde, K. (1999). Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? Ecography 22, 593613. doi: 10.1111/j.1600-0587.1999.tb00509.x.Google Scholar
Rohde, K. and Heap, M. (1998). Latitudinal differences in species and community richness and in community structure of metazoan endo- and ectoparasites of marine teleost fish. International Journal for Parasitology 28, 461474.Google Scholar
Rossin, M. A. and Timi, J. T. (2010). Parasite assemblages of Nemadactylus bergi (Pisces: Latridae): the role of larval stages in the short-scale predictability. Parasitology Research 107, 13731379. doi: 10.1007/s00436-010-2011-y.Google Scholar
Sabadin, D. E., González-Castro, M., Iudica, C., Díaz de Astarloa, J. M. and Fernández-Iriarte, P. J. (2010). Morphometric and genetic assessment of the Cynoscion guatucupa population structure from Buenos Aires coast, Argentine Sea. Revista de Biología Marina y Oceanografía 45, 513517.Google Scholar
Salas, S., Chuenpagdee, R., Seijo, J. C. and Charles, A. (2011). Challenges in the assessment and management of small-scale fisheries in Latin America and the Caribbean. Fisheries Research 87, 516. doi: 10.1016/j.fishres.2007.06.015.Google Scholar
Sánchez, R. P. and Ciechomski, J. D. (1995). Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Scientia Marina 59, 455478.Google Scholar
Sardella, N. H. and Timi, J. T. (2004). Parasites of Argentine hake in the Argentine Sea: population and infracommunity structure as evidence for host stock discrimination. Journal of Fish Biology 65, 14721488. doi: 10.1111/j.1095-8649.2004.00572.x.Google Scholar
Sardella, N. H., Mattiucci, S., Timi, J. T., Bastida, R. O., Rodríguez, D. H. and Nascetti, G. (2005). Corynosoma australe Johnston, 1937, C. cetaceum Johnston, Best, 1942 (Acanthocephala: Polymorphidae) from marine mammals and fishes in Argentinian waters: allozyme markers and taxonomic status. Systematic Parasitology 61, 143156. doi: 10.1007/s11230-005-3131-0.CrossRefGoogle ScholarPubMed
Sielfeld, W. and Vargas, M. (1999). Review of marine fish zoogeography of Chilean Patagonia (42–57°S). Scientia Marina 63, 451463.Google Scholar
Soininen, J., McDonald, R. and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 312. doi: 10.1111/j.0906-7590.2007.04817.x.Google Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, N. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A. and Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 773–583. doi: 10.1641/B570707.Google Scholar
Thorpe, A., Aguilar Ibarra, A. and Reid, C. (2000). The new economic model and marine fisheries development in Latin America. World Development 28, 16891702. doi: 10.1016/S0305-750X(00)00045-0.Google Scholar
Timi, J. T. (2003). Parasites of Argentine anchovy in the south-west Atlantic: latitudinal patterns and their use for discrimination of host populations. Journal of Fish Biology 63, 90107. doi: 10.1046/j.1095-8649.2003.00131.x.CrossRefGoogle Scholar
Timi, J. T. (2007). Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters. Journal of Helminthology 81, 107111. doi: 10.1017/S0022149X07726561.Google Scholar
Timi, J. T. and Lanfranchi, A. L. (2009 a). The metazoan parasite communities of the Argentinean sandperch Pseudopercis semifasciata (Pisces: Perciformes) and their use to elucidate the stock structure of the host. Parasitology 136, 12091219. doi: 10.1017/S0031182009990503.Google Scholar
Timi, J. T. and Lanfranchi, A. L. (2009 b). The importance of the compound community on the parasite infracommunity structure in a small benthic fish. Parasitology Research 104, 295302. doi: 10.1002/s00436-008-1191-1.CrossRefGoogle Scholar
Timi, J. T. and Lanfranchi, A. L. (2013). Ontogenetic changes in heterogeneity of parasite communities of fish: disentangling the relative role of compositional versus abundance variability. Parasitology 140, 309317. doi: 10.1017/S0031182012001606.Google Scholar
Timi, J. T. and Poulin, R. (2003). Parasite community structure within and across host populations of a marine pelagic fish: how repeatable is it? International Journal for Parasitology 33, 13531362. doi: 10.1016/S0020-7519(03)00203-0.Google Scholar
Timi, J. T., Sardella, N. H. and Navone, G. T. (2001). Parasitic nematodes of Engraulis anchoita Hubbs et Marini, 1935 (Pisces: Engraulidae) off the Argentine and Uruguayan coasts, South West Atlantic. Acta Parasitologica 46, 186193.Google Scholar
Timi, J. T., Luque, J. L. and Sardella, N. H. (2005). Parasites of Cynoscion guatucupa along South American Atlantic coasts: evidence for stock discrimination. Journal of Fish Biology 67, 16031618. doi: 10.1111/j.1095-8649.2005.00867.x.Google Scholar
Timi, J. T., Lanfranchi, A. L., Etchegoin, J. A. and Cremonte, F. (2008). Parasites of the Brazilian sandperch, Pinguipes brasilianus: a tool for stock discrimination in the Argentine Sea. Journal of Fish Biology 72, 13321342. doi: 10.1111/j.1095-8649.2008.01800.x.Google Scholar
Timi, J. T., Lanfranchi, A. L. and Etchegoin, J. A. (2009). Seasonal stability and spatial variability of parasites in Brazilian sandperch from the northern Argentine sea: evidence for stock discrimination. Journal of Fish Biology 74, 12061225. doi: 10.1111/j.1095-8649.2009.02190.x.CrossRefGoogle ScholarPubMed
Timi, J. T., Lanfranchi, A. L. and Luque, J. L. (2010 a). Similarity in parasite communities of the teleost fish Pinguipes brasilianus in the southwestern Atlantic: infracommunities as a tool to detect geographical patterns. International Journal for Parasitology 40, 243254. doi: 10.1016/j.ijpara.2009.07.006.Google Scholar
Timi, J. T., Luque, J. L. and Poulin, R. (2010 b). Host ontogeny and the temporal decay of similarity in parasite communities of marine fish. International Journal for Parasitology 40, 963968. doi: 10.1016/j.ijpara.2010.02.005.Google Scholar
Timi, J. T., Rossin, M. A., Alarcos, A. J., Braicovich, P. E., Cantatore, D. M. P. and Lanfranchi, A. L. (2011). Fish trophic level and the similarity of larval parasite assemblages. International Journal for Parasitology 41, 309316. doi: 10.1016/j.ijpara.2010.10.002.Google Scholar
Timi, J. T., Paoletti, M., Cimmaruta, R., Lanfranchi, A. L., Alarcos, A. J., Garbin, L., George-Nascimento, M., Rodríguez, D. H., Giardino, G. V. and Mattiucci, S. (2014). Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae). Veterinary Parasitology 199, 5972. doi: 10.10106/j.vetpar.2013.09.033.Google Scholar
Vales, D. G., García, N. A., Crespo, E. A. and Timi, J. T. (2011). Parasites of a marine benthic fish in the Southwestern Atlantic: searching for geographical recurrent patterns of community structure. Parasitology Research 108, 261272. doi: 10.1007/s00436-010-2052-2.Google Scholar
Valtonen, E. T., Marcogliese, D. J. and Julkunen, M. (2010). Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia 162, 139152. doi: 10.1007/s00442-009-1451-5.Google Scholar
Vinarski, M. B., Korallo, N. P., Krasnov, B. R., Shenbrot, G. I. and Poulin, R. (2007). Decay of similarity of gamasid mite assemblages parasitic on Palaearctic small mammals: geographic distance, host-species composition or environment. Journal of Biogeography 34, 16911700. doi: 10.1111/j.1365-2699.2007.01735.x.Google Scholar
Volpedo, A. V. and Fernández Cirelli, A. (2006). Otolith chemical composition as a useful tool for sciaenid stock discrimination in the south-western Atlantic. Scientia Marina 70, 325334.Google Scholar
Watson, R., Cheung, W. W. L., Anticamara, J., Sumaila, R. U., Zeller, D. and Pauly, D. (2013). Global marine yield halved as fishing intensity redoubles. Fish and Fisheries 14, 493503. doi: 10.1111/j.1467-2979.2012.00483.x.Google Scholar
Williams, H. H., MacKenzie, K. and McCarthy, A. M. (1992). Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 2, 144176. doi: 10.1007/BF00042882.Google Scholar
Wood, C. L., Byers, J. E., Cottingham, K. L., Altman, I., Donahue, M. J. and Blakeslee, A. M. H. (2007). Parasites alter community structure. Proceedings of the National Academy of Sciences USA 104, 93359339. doi: 10.1073/pnas.0700062104.Google Scholar