Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T18:15:09.830Z Has data issue: false hasContentIssue false

Mutation rates in the dihydrofolate reductase gene of Plasmodium falciparum

Published online by Cambridge University Press:  07 August 2001

S. PAGET-MCNICOL
Affiliation:
The University of Queensland and the Malaria and Arbovirus Unit, Queensland Institute of Medical Research, QLD 4029, Australia
A. SAUL
Affiliation:
Malaria Vaccine Development Unit, NIAID/LPD, National Institutes of Health, Rockville, MD 20852, USA

Abstract

A new method has been established to define the limits on a spontaneous mutation rate for a gene in Plasmodium falciparum. The method combines mathematical modelling and large-scale in vitro culturing and calculates the difference in mutant frequencies at 2 separate time-points. We measured the mutation rate at 2 positions in the dihydrofolate reductase (DHFR) gene of 3D7, a pyrimethamine-sensitive line of P. falciparum. This line was re-cloned and an effectively large population was treated with a selective pyrimethamine concentration of 40 nM. We detected point mutations at codon-46 (TTA to TCA) and codon-108 (AGC to AAC), resulting in serine replacing leucine and asparagine replacing serine respectively in the corresponding gene product. The substitutions caused a decrease in pyrimethamine sensitivity. By mathematical modelling we determined that the mutation rate at a given position in DHFR was low and occurred at less than 2.5×10−9 mutations/DHFR gene/replication. This result has important implications for Plasmodium genetic diversity and anti-malarial drug therapy by demonstrating that even with low mutation rates anti-malarial resistance will inevitably arise when mutant alleles are selected under drug pressure.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AVISE, J. C. (1991). Ten unorthodox perspectives on evolution prompted by comparative population genetic findings on mitochondrial DNA. Annual Review of Genetics 25, 4569.CrossRefGoogle Scholar
BISHOP, A. (1958). An analysis of the development of resistance to metachloridine in clones of Plasmodium gallinaceum. Parasitology 48, 210233.CrossRefGoogle Scholar
BZIK, D. J., LI, W. B., HORII, T. & INSELBURG, J. (1987). Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proceedings of the National Academy of Sciences, USA 84, 83608364.CrossRefGoogle Scholar
CHENG, Q., LAWRENCE, G., REED, C., STOWERS, A., RANFORD, C. L., CREASEY, A., CARTER, R. & SAUL, A. (1997). Measurement of Plasmodium falciparum growth rates in vivo: a test of malaria vaccines. American Journal of Tropical Medicine and Hygiene 57, 495500.CrossRefGoogle Scholar
CHENG, Q. & SAUL, A. (1994). The dihydrofolate reductase domain of rodent malarias: point mutations and pyrimethamine resistance. Molecular and Biochemical Parasitology 65, 361363.CrossRefGoogle Scholar
CHULAY, J. D., HAYNES, J. D. & DIGGS, C. L. (1983). Plasmodium falciparum: assessment of in vitro growth by 3H-hypoxanthine incorporation. Experimental Parasitology 55, 138146.CrossRefGoogle Scholar
COATNEY, G. R., COLLINS, W. E., WARREN, M. & CONTACOS, P. G. (1971). The Primate Malarias. U.S. Government Printing Office Washington, DC.
CONOVER, W. J. (1980). Some Methods Based on Ranks. In Practical Nonparametric Statistics (ed. CONOVER, W. J.), pp. 327338. John Wiley & Sons, New York.
COWMAN, A. F., MORRY, M. J., BIGGS, B. A., CROSS, G. A. & FOOTE, S. J. (1988). Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 85, 91099113.CrossRefGoogle Scholar
DESJARDINS, R. E., CANFIELD, C. J., HAYNES, J. D. & CHULAY, J. D. (1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy 16, 710718.CrossRefGoogle Scholar
DIGGENS, S. M., GUTTERIDGE, W. E. & TRIGG, P. I. (1970). Altered dihydrofolate reductase associated with a pyrimethamine-resistant Plasmodium berghei berghei produced in a single step. Nature, London 228, 579580.CrossRefGoogle Scholar
DLUZEWSKI, A. R., LING, I. T., RANGACHARI, K., BATES, P. A. & WILSON, R. J. (1984). A simple method for isolating viable mature parasites of Plasmodium falciparum from cultures. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 622624.CrossRefGoogle Scholar
DOUMBO, O. K., KAYENTAO, K., DJIMDE, A., CORTESE, J. F., DIOURTE, Y., KONARÉ, A., KUBLIN, J. G. & PLOWE, C. V. (2000). Rapid selection of Plasmodium falciparum dihydrofolate reductase mutants by pyrimethamine prophylaxis. Journal of Infectious Diseases 182, 993996.CrossRefGoogle Scholar
DRAKE, J. W. (1999). The distribution of rates of spontaneous mutation over viruses, prokaryotes and eukaryotes. Annals of the New York Academy of Sciences 870, 100107.CrossRefGoogle Scholar
ELDIN DE PÉCOULAS, P., BASCO, L. K., TAHAR, R., OUATAS, T. & MAZABRAUD, A. (1998). Analysis of the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene sequence. Gene 211, 177185.CrossRefGoogle Scholar
ESCALANTE, A. A., LAL, A. A. & AYALA, F. J. (1998). Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149, 189202.Google Scholar
FIGTREE, M., PASAY, C. J., SLADE, R., CHENG, Q., CLOONAN, N., WALKER, J. & SAUL, A. (2000). Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA1 and MSP1 genes. Molecular and Biochemical Parasitology 108, 5366.CrossRefGoogle Scholar
GASSIS, S. & RATHOD, P. K. (1996). Frequency of drug resistance in Plasmodium falciparum: a nonsynergistic combination of 5-fluoroorotate and atovaquone suppresses in vitro resistance. Antimicrobial Agents and Chemotherapy 40, 914919.Google Scholar
GOODYER, I. D. & TARASCHI, T. F. (1997). Plasmodium falciparum: a simple, rapid method for detecting parasite clones in microtiter plates. Experimental Parasitology 86, 158160.CrossRefGoogle Scholar
KEMP, D. J., COWMAN, A. F. & WALLIKER, D. (1990). Genetic diversity in Plasmodium falciparum. Advances in Parasitology 29, 75149.CrossRefGoogle Scholar
KORSINCZKY, M., CHEN, N., KOTECKA, B., SAUL, A., RIECKMANN, K. & CHENG, Q. (2000). Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located in a putative drug-binding site. Antimicrobial Agents and Chemotherapy 44, 21002108.CrossRefGoogle Scholar
KUNZ, B. A., RAMACHANDRAN, K. & VONARX, E. J. (1998). DNA sequence analysis of spontaneous mutagenesis in Saccaromyces cerevisiae. Genetics 148, 14911505.Google Scholar
LAHIRI, D. K. & NURNBERGER, J. I. (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Research 19, 5444.CrossRefGoogle Scholar
LAMBROS, C. & VANDERBERG, J. P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 418420.CrossRefGoogle Scholar
LEMCKE, T., CHRISTIANSEN, I. T. & JøRGENSEN, F. S. (1999). Towards an understanding of drug resistance in malaria: three-dimensional structure of Plasmodium falciparum dihydrofolate reductase by homology modelling. Bioorganic and Medicinal Chemistry 7, 10031011.CrossRefGoogle Scholar
MAKLER, M. T., RIES, J. M., WILLIAMS, J. A., BANCROFT, J. E., PIPER, R. C., GIBBINS, B. L. & HINRICHS, D. J. (1993). Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. American Journal of Tropical Medicine and Hygiene 48, 739741.CrossRefGoogle Scholar
MYLER, P., SAUL, A., MANGAN, T. & KIDSON, C. (1982). An automated assay of merozoite invasion of erythrocytes using highly synchronized Plasmodium falciparum cultures. Australian Journal of Experimental Biology and Medical Science 60, 8389.CrossRefGoogle Scholar
PETERS, W. (1998). Drug resistance in malaria parasites of animals and man. Advances in Parasitology 41, 162.CrossRefGoogle Scholar
PETERSON, D. S., MILHOUS, W. K. & WELLEMS, T. E. (1990). Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proceedings of the National Academy of Sciences, USA 87, 30183022.CrossRefGoogle Scholar
PETERSON, D. S., WALLIKER, D. & WELLEMS, T. E. (1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceedings of the National Academy of Sciences, USA 85, 91149118.CrossRefGoogle Scholar
RATHOD, P. K., MCERLEAN, T. & LEE, P. C. (1997). Variations in frequencies of drug resistance in Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 94, 93899393.CrossRefGoogle Scholar
ROSARIO, V. (1981). Cloning of naturally occurring mixed infections of malaria parasites. Science 212, 10371038.CrossRefGoogle Scholar
SAUL, A., MYLER, P., ELLIOTT, T. & KIDSON, C. (1982). Purification of mature schizonts of Plasmodium falciparum on colloidal silica gradients. Bulletin of the World Health Organization 60, 755759.Google Scholar
SHIRLEY, M. W., BIGGS, B. A., FORSYTH, K. P., BROWN, H. J., THOMPSON, J. K., BROWN, G. V. & KEMP, D. J. (1990). Chromosome 9 from independent clones and isolates of Plasmodium falciparum undergoes subtelomeric deletions with similar breakpoints in vitro. Molecular and Biochemical Parasitology 40, 137145.CrossRefGoogle Scholar
TRAGER, W. & JENSEN, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673675.CrossRefGoogle Scholar
WALLIKER, D., CARTER, R. & MORGAN, S. (1973). Genetic recombination in Plasmodium berghei. Parasitology 66, 309320.CrossRefGoogle Scholar
WALLIKER, D., CARTER, R. & SANDERSON, A. (1975). Genetic studies on Plasmodium chabaudi: recombination between enzyme markers. Parasitology 70, 1924.CrossRefGoogle Scholar
WALLIKER, D., QUAKYI, I. A., WELLEMS, T. E., MCCUTCHAN, T. F., SZARFMAN, A., LONDON, W. T., CORCORAN, L. M., BURKOT, T. R. & CARTER, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 16611666.CrossRefGoogle Scholar