Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T00:22:09.408Z Has data issue: false hasContentIssue false

Naturally acquired immunity to sexual stage P. falciparum parasites

Published online by Cambridge University Press:  08 January 2016

WILL J. R. STONE
Affiliation:
Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
KATHLEEN W. DANTZLER
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
SANDRA K. NILSSON
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
CHRIS J. DRAKELEY
Affiliation:
Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
MATTHIAS MARTI
Affiliation:
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
TEUN BOUSEMA*
Affiliation:
Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
SANNA R. RIJPMA
Affiliation:
Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
*
*Corresponding author. Department of Medical Microbiology, Radboud University Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands. E-mail: Teun.Bousema@radboudumc.nl

Summary

Gametocytes are the specialized form of Plasmodium parasites that are responsible for human-to-mosquito transmission of malaria. Transmission of gametocytes is highly effective, but represents a biomass bottleneck for the parasite that has stimulated interest in strategies targeting the transmission stages separately from those responsible for clinical disease. Studying targets of naturally acquired immunity against transmission-stage parasites may reveal opportunities for novel transmission reducing interventions, particularly the development of a transmission blocking vaccine (TBV). In this review, we summarize the current knowledge on immunity against the transmission stages of Plasmodium. This includes immune responses against epitopes on the gametocyte-infected erythrocyte surface during gametocyte development, as well as epitopes present upon gametocyte activation in the mosquito midgut. We present an analysis of historical data on transmission reducing immunity (TRI), as analysed in mosquito feeding assays, and its correlation with natural recognition of sexual stage specific proteins Pfs48/45 and Pfs230. Although high antibody titres towards either one of these proteins is associated with TRI, the presence of additional, novel targets is anticipated. In conclusion, the identification of novel gametocyte-specific targets of naturally acquired immunity against different gametocyte stages could aid in the development of potential TBV targets and ultimately an effective transmission blocking approach.

Type
Special Issue Review
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar, R., Magallon-Tejada, A., Achtman, A. H., Moraleda, C., Joice, R., Cistero, P., Li Wai Suen, C. S., Nhabomba, A., Macete, E., Mueller, I., Marti, M., Alonso, P. L., Menendez, C., Schofield, L. and Mayor, A. (2014 a). Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 123, 959966.CrossRefGoogle ScholarPubMed
Aguilar, R., Moraleda, C., Achtman, A. H., Mayor, A., Quinto, L., Cistero, P., Nhabomba, A., Macete, E., Schofield, L., Alonso, P. L. and Menendez, C. (2014 b). Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. British Journal of Haematology 164, 877887.CrossRefGoogle ScholarPubMed
Aingaran, M., Zhang, R., Law, S. K., Peng, Z., Undisz, A., Meyer, E., Diez-Silva, M., Burke, T. A., Spielmann, T., Lim, C. T., Suresh, S., Dao, M. and Marti, M. (2012). Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell Microbiology 14, 983993.CrossRefGoogle ScholarPubMed
Ajua, A., Engleitner, T., Esen, M., Theisen, M., Issifou, S. and Mordmuller, B. (2012). A flow cytometry-based workflow for detection and quantification of anti-plasmodial antibodies in vaccinated and naturally exposed individuals. Malaria Journal 11, 367.CrossRefGoogle ScholarPubMed
Beshir, K. B., Sutherland, C. J., Sawa, P., Drakeley, C. J., Okell, L., Mweresa, C. K., Omar, S. A., Shekalaghe, S. A., Kaur, H., Ndaro, A., Chilongola, J., Schallig, H. D., Sauerwein, R. W., Hallett, R. L. and Bousema, T. (2013). Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. Journal of Infectious Diseases 208, 20172024.CrossRefGoogle ScholarPubMed
Billker, O., Lindo, V., Panico, M., Etienne, A. E., Paxton, T., Dell, A., Rogers, M., Sinden, R. E. and Morris, H. R. (1998). Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289292.CrossRefGoogle ScholarPubMed
Billker, O., Shaw, M. K., Margos, G. and Sinden, R. E. (1997). The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 115 (Pt 1), 17.CrossRefGoogle ScholarPubMed
Blagborough, A. M. and Sinden, R. E. (2009). Plasmodium berghei HAP2 induces strong malaria transmission-blocking immunity in vivo and in vitro. Vaccine 27, 51875194.CrossRefGoogle ScholarPubMed
Bouharoun-Tayoun, H., Oeuvray, C., Lunel, F. and Druilhe, P. (1995). Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. The Journal of Experimental Medicine 182, 409418.CrossRefGoogle ScholarPubMed
Bousema, J. T., Drakeley, C. J., Kihonda, J., Hendriks, J. C., Akim, N. I., Roeffen, W. and Sauerwein, R. W. (2007). A longitudinal study of immune responses to Plasmodium falciparum sexual stage antigens in Tanzanian adults. Parasite Immunology 29, 309317.CrossRefGoogle ScholarPubMed
Bousema, J. T., Roeffen, W., van der Kolk, M., de Vlas, S. J., van de Vegte-Bolmer, M., Bangs, M. J., Teelen, K., Kurniawan, L., Maguire, J. D., Baird, J. K. and Sauerwein, R. W. (2006). Rapid onset of transmission-reducing antibodies in Javanese migrants exposed to malaria in Papua, Indonesia. American Journal of Tropical Medicine and Hygiene 74, 425431.CrossRefGoogle ScholarPubMed
Bousema, T., Churcher, T. S., Morlais, I. and Dinglasan, R. R. (2013). Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions? Trends in Parasitology 29, 5359.CrossRefGoogle ScholarPubMed
Bousema, T., Dinglasan, R. R., Morlais, I., Gouagna, L. C., van Warmerdam, T., Awono-Ambene, P. H., Bonnet, S., Diallo, M., Coulibaly, M., Tchuinkam, T., Mulder, B., Targett, G., Drakeley, C., Sutherland, C., Robert, V., Doumbo, O., Toure, Y., Graves, P. M., Roeffen, W., Sauerwein, R., Birkett, A., Locke, E., Morin, M., Wu, Y. and Churcher, T. S. (2012). Mosquito feeding assays to determine the infectiousness of naturally infected Plasmodium falciparum gametocyte carriers. PLoS ONE 7, e42821.CrossRefGoogle ScholarPubMed
Bousema, T. and Drakeley, C. (2011). Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clinical Microbiology Reviews 24, 377410.CrossRefGoogle ScholarPubMed
Bousema, T., Okell, L., Felger, I. and Drakeley, C. (2014). Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nature Reviews Microbiology 12, 833840.CrossRefGoogle ScholarPubMed
Bousema, T., Okell, L., Shekalaghe, S., Griffin, J., Omar, S., Sawa, P., Sutherland, C., Sauerwein, R., Ghani, A. and Drakeley, C. (2010 a). Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malaria Journal 9, 136.CrossRefGoogle ScholarPubMed
Bousema, T., Roeffen, W., Meijerink, H., Mwerinde, H., Mwakalinga, S., van Gemert, G. J., van de Vegte-Bolmer, M., Mosha, F., Targett, G., Riley, E. M., Sauerwein, R. and Drakeley, C. (2010 b). The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in Tanzania. PLoS ONE 5, e14114.CrossRefGoogle Scholar
Bousema, T., Sutherland, C. J., Churcher, T. S., Mulder, B., Gouagna, L. C., Riley, E. M., Targett, G. A. and Drakeley, C. J. (2011). Human immune responses that reduce the transmission of Plasmodium falciparum in African populations. International Journal of Parasitology 41, 293300.CrossRefGoogle ScholarPubMed
Bruce, M. C., Carter, R. N., Nakamura, K.-i., Aikawa, M. and Carter, R. (1994). Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16. Molecular and Biochemical Parasitology 65, 1122.CrossRefGoogle ScholarPubMed
Carter, R. and Chen, D. H. (1976). Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature 263, 5760.CrossRefGoogle ScholarPubMed
Carter, R., Graves, P. M., Creasey, A., Byrne, K., Read, D., Alano, P. and Fenton, B. (1989). Plasmodium falciparum: an abundant stage-specific protein expressed during early gametocyte development. Experimental Parasitology 69, 140149.CrossRefGoogle ScholarPubMed
Carter, R., Graves, P. M., Keister, D. B. and Quakyi, I. A. (1990). Properties of epitopes of Pfs 48/45, a target of transmission blocking monoclonal antibodies, on gametes of different isolates of Plasmodium falciparum. Parasite Immunology 12, 587603.CrossRefGoogle ScholarPubMed
Carter, R., Gwadz, R. W. and McAuliffe, F. M. (1979). Plasmodium gallinaceum: transmission-blocking immunity in chickens: I. Comparative immunogenicity of gametocyte- and gamete-containing preparations. Experimental Parasitology 47, 185193.CrossRefGoogle ScholarPubMed
Chowdhury, D. R., Angov, E., Kariuki, T. and Kumar, N. (2009). A potent Malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS ONE 4, e6352.CrossRefGoogle ScholarPubMed
Churcher, T. S., Blagborough, A. M., Delves, M., Ramakrishnan, C., Kapulu, M. C., Williams, A. R., Biswas, S., Da, D. F., Cohuet, A. and Sinden, R. E. (2012). Measuring the blockade of malaria transmission--an analysis of the standard membrane feeding assay. International Journal for Parasitology 42, 10371044.CrossRefGoogle ScholarPubMed
Crompton, P. D., Kayala, M. A., Traore, B., Kayentao, K., Ongoiba, A., Weiss, G. E., Molina, D. M., Burk, C. R., Waisberg, M., Jasinskas, A., Tan, X., Doumbo, S., Doumtabe, D., Kone, Y., Narum, D. L., Liang, X., Doumbo, O. K., Miller, L. H., Doolan, D. L., Baldi, P., Felgner, P. L. and Pierce, S. K. (2010). A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proceedings of the National Academy of Sciences of the United States of America 107, 69586963.CrossRefGoogle ScholarPubMed
Delrieu, I., Waller, C. C., Mota, M. M., Grainger, M., Langhorne, J. and Holder, A. A. (2002). PSLAP, a protein with multiple adhesive motifs, is expressed in Plasmodium falciparum gametocytes. Molecular and Biochemical Parasitology 121, 1120.CrossRefGoogle ScholarPubMed
Dinglasan, R. R., Kalume, D. E., Kanzok, S. M., Ghosh, A. K., Muratova, O., Pandey, A. and Jacobs-Lorena, M. (2007). Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proceedings of the National Academy of Sciences 104, 1346113466.CrossRefGoogle ScholarPubMed
Dondorp, A. M., Nosten, F., Yi, P., Das, D., Phyo, A. P., Tarning, J., Lwin, K. M., Ariey, F., Hanpithakpong, W., Lee, S. J., Ringwald, P., Silamut, K., Imwong, M., Chotivanich, K., Lim, P., Herdman, T., An, S. S., Yeung, S., Singhasivanon, P., Day, N. P., Lindegardh, N., Socheat, D. and White, N. J. (2009). Artemisinin resistance in Plasmodium falciparum malaria. New England Journal of Medicine 361, 455467.CrossRefGoogle ScholarPubMed
Doolan, D. L., Dobaño, C. and Baird, J. K. (2009). Acquired immunity to Malaria. Clinical Microbiology Reviews 22, 1336.CrossRefGoogle ScholarPubMed
Doolan, D. L., Mu, Y., Unal, B., Sundaresh, S., Hirst, S., Valdez, C., Randall, A., Molina, D., Liang, X., Freilich, D. A., Oloo, J. A., Blair, P. L., Aguiar, J. C., Baldi, P., Davies, D. H. and Felgner, P. L. (2008). Profiling humoral immune responses to P. falciparum infection with protein microarrays. PROTEOMICS 8, 46804694.CrossRefGoogle Scholar
Drakeley, C. J., Bousema, J. T., Akim, N. I., Teelen, K., Roeffen, W., Lensen, A. H., Bolmer, M., Eling, W. and Sauerwein, R. W. (2006). Transmission-reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers. Parasite Immunology 28, 185190.CrossRefGoogle ScholarPubMed
Drakeley, C. J., Eling, W., Teelen, K., Bousema, J. T., Sauerwein, R., Greenwood, B. M. and Targett, G. A. (2004). Parasite infectivity and immunity to Plasmodium falciparum gametocytes in Gambian children. Parasite Immunology 26, 159165.CrossRefGoogle ScholarPubMed
Drakeley, C. J., Mulder, L., Tchuinkam, T., Gupta, S., Sauerwein, R. and Targett, G. A. (1998). Transmission-blocking effects of sera from malaria-exposed individuals on Plasmodium falciparum isolates from gametocyte carriers. Parasitology 116 (Pt 5), 417423.CrossRefGoogle ScholarPubMed
Duffy, P. E. and Kaslow, D. C. (1997). A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infection and Immunity 65, 11091113.CrossRefGoogle ScholarPubMed
Eksi, S., Czesny, B., van Gemert, G. J., Sauerwein, R. W., Eling, W. and Williamson, K. C. (2006). Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Molecular Microbiology 61, 991998.CrossRefGoogle ScholarPubMed
Farfour, E., Charlotte, F., Settegrana, C., Miyara, M. and Buffet, P. (2012). The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation? Malaria Journal 11, 285.CrossRefGoogle ScholarPubMed
Farrance, C. E., Rhee, A., Jones, R. M., Musiychuk, K., Shamloul, M., Sharma, S., Mett, V., Chichester, J. A., Streatfield, S. J., Roeffen, W., van de Vegte-Bolmer, M., Sauerwein, R. W., Tsuboi, T., Muratova, O. V., Wu, Y. and Yusibov, V. (2011). A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clinical and Vaccine Immunology 18, 13511357.CrossRefGoogle ScholarPubMed
Florens, L., Washburn, M. P., Raine, J. D., Anthony, R. M., Grainger, M., Haynes, J. D., Moch, J. K., Muster, N., Sacci, J. B., Tabb, D. L., Witney, A. A., Wolters, D., Wu, Y., Gardner, M. J., Holder, A. A., Sinden, R. E., Yates, J. R. and Carucci, D. J. (2002). A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520526.CrossRefGoogle ScholarPubMed
Gamage-Mendis, A. C., Rajakaruna, J., Carter, R. and Mendis, K. N. (1992). Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka. Parasite Immunology 14, 385396.CrossRefGoogle Scholar
Gaye, A., Bousema, T., Libasse, G., Ndiath, M. O., Konate, L., Jawara, M., Faye, O. and Sokhna, C. (2015). Infectiousness of the human population to Anopheles arabiensis by direct skin feeding in an area hypoendemic for malaria in Senegal. American Journal of Tropical Medicine and Hygiene 92, 648652.CrossRefGoogle Scholar
Gilson, P. R., Nebl, T., Vukcevic, D., Moritz, R. L., Sargeant, T., Speed, T. P., Schofield, L. and Crabb, B. S. (2006). Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Molecular & Cellular Proteomics 5, 12861299.CrossRefGoogle ScholarPubMed
Gouagna, L. C., Bonnet, S., Gounoue, R., Verhave, J. P., Eling, W., Sauerwein, R. and Boudin, C. (2004). Stage-specific effects of host plasma factors on the early sporogony of autologous Plasmodium falciparum isolates within Anopheles gambiae. Tropical Medicine and International Health 9, 937948.CrossRefGoogle ScholarPubMed
Graves, P. M., Carter, R., Burkot, T. R., Quakyi, I. A. and Kumar, N. (1988). Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunology 10, 209218.CrossRefGoogle ScholarPubMed
Griffin, J. T., Hollingsworth, T. D., Okell, L. C., Churcher, T. S., White, M., Hinsley, W., Bousema, T., Drakeley, C. J., Ferguson, N. M., Basanez, M. G. and Ghani, A. C. (2010). Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Medicine 7, doi: 10.1371/journal.pmed.1000324.CrossRefGoogle Scholar
Grotendorst, C. A., Carter, R., Rosenberg, R. and Koontz, L. C. (1986). Complement effects on the infectivity of Plasmodium gallinaceum to Aedes aegypti mosquitoes. I. Resistance of zygotes to the alternative pathway of complement. Journal of Immunology 136, 42704274.CrossRefGoogle Scholar
Gwadz, R. W. (1976). Successful immunization against the sexual stages of Plasmodium gallinaceum. Science 193, 11501151.CrossRefGoogle ScholarPubMed
Gwadz, R. W. and Koontz, L. C. (1984). Plasmodium knowlesi: persistence of transmission blocking immunity in monkeys immunized with gamete antigens. Infection and Immunity 44, 137140.CrossRefGoogle ScholarPubMed
Hall, N., Karras, M., Raine, J. D., Carlton, J. M., Kooij, T. W., Berriman, M., Florens, L., Janssen, C. S., Pain, A., Christophides, G. K., James, K., Rutherford, K., Harris, B., Harris, D., Churcher, C., Quail, M. A., Ormond, D., Doggett, J., Trueman, H. E., Mendoza, J., Bidwell, S. L., Rajandream, M. A., Carucci, D. J., Yates, J. R. III, Kafatos, F. C., Janse, C. J., Barrell, B., Turner, C. M., Waters, A. P. and Sinden, R. E. (2005). A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 8286.CrossRefGoogle ScholarPubMed
Hayward, R. E., Tiwari, B., Piper, K. P., Baruch, D. I. and Day, K. P. (1999). Virulence and transmission success of the malarial parasite Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 96, 45634568.CrossRefGoogle ScholarPubMed
Healer, J., Graszynski, A. and Riley, E. (1999 a). Phagocytosis does not play a major role in naturally acquired transmission-blocking immunity to Plasmodium falciparum Malaria. Infection and Immunity 67, 23342339.CrossRefGoogle ScholarPubMed
Healer, J., McGuinness, D., Carter, R. and Riley, E. (1999 b). Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230. Parasitology 119, (Pt 5), 425433.CrossRefGoogle Scholar
Joice, R., Narasimhan, V., Montgomery, J., Sidhu, A. B., Oh, K., Meyer, E., Pierre-Louis, W., Seydel, K., Milner, D., Williamson, K., Wiegand, R., Ndiaye, D., Daily, J., Wirth, D., Taylor, T., Huttenhower, C. and Marti, M. (2013). Inferring developmental stage composition from gene expression in human malaria. PLoS Computational Biology 9, e1003392.CrossRefGoogle ScholarPubMed
Joice, R., Nilsson, S. K., Montgomery, J., Dankwa, S., Egan, E., Morahan, B., Seydel, K. B., Bertuccini, L., Alano, P., Williamson, K. C., Duraisingh, M. T., Taylor, T. E., Milner, D. A. and Marti, M. (2014). Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science Translational Medicine 6, 244re245.CrossRefGoogle ScholarPubMed
Jones, S., Grignard, L., Nebie, I., Chilongola, J., Dodoo, D., Sauerwein, R., Theisen, M., Roeffen, W., Singh, S. K., Singh, R. K., Singh, S., Kyei-Baafour, E., Tetteh, K., Drakeley, C. and Bousema, T. (2015). Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates. Journal of Infection 71, 117127.CrossRefGoogle ScholarPubMed
Karunaweera, N. D., Carter, R., Grau, G. E., Kwiatkowski, D., Del Giudice, G. and Mendis, K. N. (1992). Tumour necrosis factor-dependent parasite-killing effects during paroxysms in non-immune Plasmodium vivax malaria patients. Clinical and Experimental Immunology 88, 499505.CrossRefGoogle ScholarPubMed
Kaslow, D. C., Bathurst, I. C. and Barr, P. J. (1992). Malaria transmission-blocking vaccines. Trends in Biotechnology 10, 388391.CrossRefGoogle ScholarPubMed
Khan, S. M., Franke-Fayard, B., Mair, G. R., Lasonder, E., Janse, C. J., Mann, M. and Waters, A. P. (2005). Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121, 675687.CrossRefGoogle ScholarPubMed
Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M. W., Pain, A., Sauerwein, R. W., Eling, W. M. C., Hall, N., Waters, A. P., Stunnenberg, H. G. and Mann, M. (2002). Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537542.CrossRefGoogle ScholarPubMed
Le Roch, K. G., Johnson, J. R., Florens, L., Zhou, Y., Santrosyan, A., Grainger, M., Yan, S. F., Williamson, K. C., Holder, A. A., Carucci, D. J., Yates, J. R. III and Winzeler, E. A. (2004). Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Research 14, 23082318.CrossRefGoogle ScholarPubMed
Lensen, A., Mulder, L., Tchuinkam, T., Willemsen, L., Eling, W. and Sauerwein, R. (1998). Mechanisms that reduce transmission of Plasmodium falciparum Malaria in Semi-immune and Nonimmune persons. Journal of Infectious Diseases 177, 13581363.CrossRefGoogle Scholar
Lensen, A., van Druten, J., Bolmer, M., van Gemert, G., Eling, W. and Sauerwein, R. (1996). Measurement by membrane feeding of reduction in Plasmodium falciparum transmission induced by endemic sera. Transactions of the Royal Society of Tropical Medicine and Hygiene 90, 2022.CrossRefGoogle ScholarPubMed
Lensen, A. H., Bolmer-Van de Vegte, M., van Gemert, G. J., Eling, W. M. and Sauerwein, R. W. (1997). Leukocytes in a Plasmodium falciparum-infected blood meal reduce transmission of malaria to Anopheles mosquitoes. Infection and Immunity 65, 38343837.CrossRefGoogle Scholar
Mair, G. R., Braks, J. A., Garver, L. S., Wiegant, J. C., Hall, N., Dirks, R. W., Khan, S. M., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2006). Regulation of sexual development of Plasmodium by translational repression. Science 313, 667669.CrossRefGoogle ScholarPubMed
Mair, G. R., Lasonder, E., Garver, L. S., Franke-Fayard, B. M., Carret, C. K., Wiegant, J. C., Dirks, R. W., Dimopoulos, G., Janse, C. J. and Waters, A. P. (2010). Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathogens 6, e1000767.CrossRefGoogle ScholarPubMed
Mbengue, A., Bhattacharjee, S., Pandharkar, T., Liu, H., Estiu, G., Stahelin, R. V., Rizk, S. S., Njimoh, D. L., Ryan, Y., Chotivanich, K., Nguon, C., Ghorbal, M., Lopez-Rubio, J. J., Pfrender, M., Emrich, S., Mohandas, N., Dondorp, A. M., Wiest, O. and Haldar, K. (2015). A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature.CrossRefGoogle ScholarPubMed
McGilvray, I. D., Serghides, L., Kapus, A., Rotstein, O. D. and Kain, K. C. (2000). Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum–parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96, 32313240.CrossRefGoogle ScholarPubMed
McRobert, L., Preiser, P., Sharp, S., Jarra, W., Kaviratne, M., Taylor, M. C., Renia, L. and Sutherland, C. J. (2004). Distinct trafficking and localization of STEVOR proteins in three stages of the Plasmodium falciparum life cycle. Infection and Immunity 72, 65976602.CrossRefGoogle ScholarPubMed
Mendis, K. N., Munesinghe, Y. D., de Silva, Y. N., Keragalla, I. and Carter, R. (1987). Malaria transmission-blocking immunity induced by natural infections of Plasmodium vivax in humans. Infection and Immunity 55, 369372.CrossRefGoogle ScholarPubMed
Miura, K., Jongert, E., Deng, B., Zhou, L., Lusingu, J. P., Drakeley, C. J., Fay, M. P., Long, C. A. and Vekemans, J. (2014). Effect of ingested human antibodies induced by RTS, S/AS01 malaria vaccination in children on Plasmodium falciparum oocyst formation and sporogony in mosquitoes. In Malaria Journal 13, 263.CrossRefGoogle ScholarPubMed
Miura, K., Takashima, E., Deng, B., Tullo, G., Diouf, A., Moretz, S. E., Nikolaeva, D., Diakite, M., Fairhurst, R. M., Fay, M. P., Long, C. A. and Tsuboi, T. (2013). Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infection and Immunity 81, 43774382.CrossRefGoogle ScholarPubMed
Mulder, B., Lensen, T., Tchuinkam, T., Roeffen, W., Verhave, J. P., Boudin, C. and Sauerwein, R. (1999). Plasmodium falciparum: membrane feeding assays and competition ELISAs for the measurement of transmission reduction in sera from Cameroon. Experimental Parasitology 92, 8186.CrossRefGoogle ScholarPubMed
Mulder, B., Tchuinkam, T., Dechering, K., Verhave, J. P., Carnevale, P., Meuwissen, J. H. and Robert, V. (1994). Malaria transmission-blocking activity in experimental infections of Anopheles gambiae from naturally infected Plasmodium falciparum gametocyte carriers. Transactions of the Royal Society of Tropical Medicine and Hygiene 88, 121125.CrossRefGoogle ScholarPubMed
Naotunne, T. D., Rathnayake, K. D., Jayasinghe, A., Carter, R. and Mendis, K. N. (1990). Plasmodium cynomolgi: serum-mediated blocking and enhancement of infectivity to mosquitoes during infections in the natural host, Macaca sinica. Experimental Parasitology 71, 305313.CrossRefGoogle ScholarPubMed
Naotunne, T. S., Karunaweera, N. D., Del Giudice, G., Kularatne, M. U., Grau, G. E., Carter, R. and Mendis, K. N. (1991). Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. The Journal of Experimental Medicine 173, 523529.CrossRefGoogle ScholarPubMed
Naotunne, T. S., Karunaweera, N. D., Mendis, K. N. and Carter, R. (1993). Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78, 555562.Google ScholarPubMed
Nikolaeva, D., Draper, S. J. and Biswas, S. (2015). Toward the development of effective transmission-blocking vaccines for malaria. Expert Review of Vaccines 14, 653680.CrossRefGoogle ScholarPubMed
Nunes, J. K., Woods, C., Carter, T., Raphael, T., Morin, M. J., Diallo, D., Leboulleux, D., Jain, S., Loucq, C., Kaslow, D. C. and Birkett, A. J. (2014). Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine 32, 55315539.CrossRefGoogle ScholarPubMed
Ong, C. S., Zhang, K. Y., Eida, S. J., Graves, P. M., Dow, C., Looker, M., Rogers, N. C., Chiodini, P. L. and Targett, G. A. (1990). The primary antibody response of malaria patients to Plasmodium falciparum sexual stage antigens which are potential transmission blocking vaccine candidates. Parasite Immunology 12, 447456.CrossRefGoogle ScholarPubMed
Ouedraogo, A. L., Bousema, T., de Vlas, S. J., Cuzin-Ouattara, N., Verhave, J. P., Drakeley, C., Luty, A. J. and Sauerwein, R. (2010). The plasticity of Plasmodium falciparum gametocytaemia in relation to age in Burkina Faso. Malaria Journal 9, 281.CrossRefGoogle ScholarPubMed
Ouedraogo, A. L., Bousema, T., Schneider, P., de Vlas, S. J., Ilboudo-Sanogo, E., Cuzin-Ouattara, N., Nebie, I., Roeffen, W., Verhave, J. P., Luty, A. J. and Sauerwein, R. (2009). Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS ONE 4, e8410.CrossRefGoogle Scholar
Ouédraogo, A. L., Guelbéogo, W. M., Cohuet, A., Morlais, I., King, J. G., Gonçalves, B. P., Bastiaens, G. J. H., Vaanhold, M., Sattabongkot, J., Wu, Y., Coulibaly, M., Ibrahima, B., Jones, S., Morin, M., Drakeley, C., Dinglasan, R. R., Bousema, T. (2013). A protocol for membrane feeding assays to determine the infectiousness of P. falciparum naturally infected individuals to Anopheles gambiae. Malaria World Journal 4, 14.Google Scholar
Outchkourov, N. S., Roeffen, W., Kaan, A., Jansen, J., Luty, A., Schuiffel, D., van Gemert, G. J., van de Vegte-Bolmer, M., Sauerwein, R. W. and Stunnenberg, H. G. (2008). Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proceedings of the National Academy of Sciences of the United States of America 105, 43014305.CrossRefGoogle ScholarPubMed
Peatey, C. L., Watson, J. A., Trenholme, K. R., Brown, C. L., Nielson, L., Guenther, M., Timmins, N., Watson, G. S. and Gardiner, D. L. (2013). Enhanced gametocyte formation in erythrocyte progenitor cells: a site-specific adaptation by Plasmodium falciparum. Journal of Infectious Diseases 208, 11701174.CrossRefGoogle ScholarPubMed
Peiris, J. S., Premawansa, S., Ranawaka, M. B., Udagama, P. V., Munasinghe, Y. D., Nanayakkara, M. V., Gamage, C. P., Carter, R., David, P. H. and Mendis, K. N. (1988). Monoclonal and polyclonal antibodies both block and enhance transmission of human Plasmodium vivax malaria. American Journal of Tropical Medicine and Hygiene 39, 2632.CrossRefGoogle ScholarPubMed
Pelle, K. G., Oh, K., Buchholz, K., Narasimhan, V., Joice, R., Milner, D. A., Brancucci, N. M., Ma, S., Voss, T. S., Ketman, K., Seydel, K. B., Taylor, T. E., Barteneva, N. S., Huttenhower, C. and Marti, M. (2015). Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Medicine 7, 19.CrossRefGoogle ScholarPubMed
Ponnudurai, T., Lensen, A. H., Van Gemert, G. J., Bensink, M. P., Bolmer, M. and Meuwissen, J. H. (1989). Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology 98 Pt 2, 165173.CrossRefGoogle ScholarPubMed
Ponnudurai, T., van Gemert, G. J., Bensink, T., Lensen, A. H. and Meuwissen, J. H. (1987). Transmission blockade of Plasmodium falciparum: its variability with gametocyte numbers and concentration of antibody. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 491493.CrossRefGoogle ScholarPubMed
Pradel, G. (2007). Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134, 19111929CrossRefGoogle ScholarPubMed
Premawansa, S., Gamage-Mendis, A., Perera, L., Begarnie, S., Mendis, K. and Carter, R. (1994). Plasmodium falciparum malaria transmission-blocking immunity under conditions of low endemicity as in Sri Lanka. Parasite Immunology 16, 3542.CrossRefGoogle ScholarPubMed
Ranawaka, G., Alejo-Blanco, R. and Sinden, R. E. (1993). The effect of transmission-blocking antibody ingested in primary and secondary blood feeds, upon the development of Plasmodium berghei in the mosquito vector. Parasitology 107 (Pt 3), 225231.CrossRefGoogle ScholarPubMed
Ranawaka, G. R., Alejo-Blanco, A. R. and Sinden, R. E. (1994). Characterization of the effector mechanisms of a transmission-blocking antibody upon differentiation of Plasmodium berghei gametocytes into ookinetes in vitro. Parasitology 109 (Pt 1), 1117.CrossRefGoogle ScholarPubMed
Rener, J., Graves, P. M., Carter, R., Williams, J. L. and Burkot, T. R. (1983). Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. The Journal of Experimental Medicine 158, 976981.CrossRefGoogle ScholarPubMed
Roeffen, W., Lensen, T., Mulder, B., Teelen, K., Sauerwein, R., Eling, W., Meuwissen, J. H. and Beckers, P. (1994). Transmission blocking immunity as observed in a feeder system and serological reactivity to Pfs 48/45 and Pfs230 in field sera. Memorias do Instituto Oswaldo Cruz 89 (Suppl 2), 1315.CrossRefGoogle Scholar
Roeffen, W., Mulder, B., Teelen, K., Bolmer, M., Eling, W., Targett, G. A., Beckers, P. J. and Sauerwein, R. (1996). Association between anti-Pfs48/45 reactivity and P. falciparum transmission-blocking activity in sera from Cameroon. Parasite Immunology 18, 103109.CrossRefGoogle ScholarPubMed
Rogers, N. J., Hall, B. S., Obiero, J., Targett, G. A. and Sutherland, C. J. (2000). A model for sequestration of the transmission stages of Plasmodium falciparum: adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infection and Immunity 68, 34553462.CrossRefGoogle Scholar
RTS'S Clinical Trials Partnership (2015). Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 3145.CrossRefGoogle Scholar
Saeed, M., Roeffen, W., Alexander, N., Drakeley, C. J., Targett, G. A. and Sutherland, C. J. (2008). Plasmodium falciparum antigens on the surface of the gametocyte-infected erythrocyte. PLoS ONE 3, e2280.CrossRefGoogle ScholarPubMed
Sauerwein, R. W., and Bousema, T. (2015). Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine. doi: 10.1016/j.vaccine.2015.08.073.CrossRefGoogle ScholarPubMed
Schneider, P., Bousema, J. T., Gouagna, L. C., Otieno, S., van de Vegte-Bolmer, M., Omar, S. A. and Sauerwein, R. W. (2007). Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. American Journal of Tropical Medicine and Hygiene 76, 470474.CrossRefGoogle ScholarPubMed
Schneider, P., Bousema, T., Omar, S., Gouagna, L., Sawa, P., Schallig, H. and Sauerwein, R. (2006). (Sub)microscopic Plasmodium falciparum gametocytaemia in Kenyan children after treatment with sulphadoxine-pyrimethamine monotherapy or in combination with artesunate. International Journal for Parasitology 36, 403408.CrossRefGoogle ScholarPubMed
Schneider, P., Schoone, G., Schallig, H., Verhage, D., Telgt, D., Eling, W. and Sauerwein, R. (2004). Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Molecular and Biochemical Parasitology 137, 3541.CrossRefGoogle ScholarPubMed
Sharp, S., Lavstsen, T., Fivelman, Q. L., Saeed, M., McRobert, L., Templeton, T. J., Jensen, A. T., Baker, D. A., Theander, T. G. and Sutherland, C. J. (2006). Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes. Eukaryotic Cell 5, 12061214.CrossRefGoogle Scholar
Shekalaghe, S. A., Teun Bousema, J., Kunei, K. K., Lushino, P., Masokoto, A., Wolters, L. R., Mwakalinga, S., Mosha, F. W., Sauerwein, R. W. and Drakeley, C. J. (2007). Submicroscopic Plasmodium falciparum gametocyte carriage is common in an area of low and seasonal transmission in Tanzania. Tropical Medicine & International Health 12, 547553.CrossRefGoogle Scholar
Shute, P. G. and Maryon, M. (1951). A study of gametocytes in a West African strain of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 44, 421438.CrossRefGoogle Scholar
Silvestrini, F., Bozdech, Z., Lanfrancotti, A., Di Giulio, E., Bultrini, E., Picci, L., Derisi, J. L., Pizzi, E. and Alano, P. (2005). Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Molecular and Biochemical Parasitology 143, 100110.CrossRefGoogle ScholarPubMed
Silvestrini, F., Lasonder, E., Olivieri, A., Camarda, G., van Schaijk, B., Sanchez, M., Younis Younis, S., Sauerwein, R. and Alano, P. (2010). Protein export marks the early phase of gametocytogenesis of the human Malaria parasite Plasmodium falciparum. Molecular & Cellular Proteomics 9, 14371448.CrossRefGoogle ScholarPubMed
Silvestrini, F., Tiburcio, M., Bertuccini, L. and Alano, P. (2012). Differential adhesive properties of sequestered asexual and sexual stages of Plasmodium falciparum on human endothelial cells are tissue independent. PLoS ONE 7, e31567.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1983 a). The cell biology of sexual development in plasmodium. Parasitology 86 (Pt 4), 728.CrossRefGoogle ScholarPubMed
Sinden, R. E. (1983 b). Sexual development of malarial parasites. Advances in Parasitology 22, 153216.CrossRefGoogle ScholarPubMed
Sinden, R. E. and Smalley, M. E. (1976). Gametocytes of Plasmodium falciparum: phagocytosis by leucocytes in vivo and in vitro. Transactions of the Royal Society of Tropical Medicine and Hygiene 70, 344345.CrossRefGoogle ScholarPubMed
Sinha, A., Hughes, K. R., Modrzynska, K. K., Otto, T. D., Pfander, C., Dickens, N. J., Religa, A. A., Bushell, E., Graham, A. L., Cameron, R., Kafsack, B. F., Williams, A. E., Llinas, M., Berriman, M., Billker, O. and Waters, A. P. (2014). A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253257.CrossRefGoogle ScholarPubMed
Smith, D. L., McKenzie, F. E., Snow, R. W. and Hay, S. I. (2007). Revisiting the basic reproductive number for Malaria and its implications for Malaria control. PLoS Biology 5, e42.CrossRefGoogle ScholarPubMed
Smith, T. G., Lourenco, P., Carter, R., Walliker, D. and Ranford-Cartwright, L. C. (2000). Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 121 (Pt 2), 127133.CrossRefGoogle ScholarPubMed
Smith, T. G., Serghides, L., Patel, S. N., Febbraio, M., Silverstein, R. L. and Kain, K. C. (2003). CD36-mediated Nonopsonic phagocytosis of erythrocytes infected with stage I and IIA gametocytes of Plasmodium falciparum. Infection and Immunity 71, 393400.CrossRefGoogle Scholar
Stewart, L., Gosling, R., Griffin, J., Gesase, S., Campo, J., Hashim, R., Masika, P., Mosha, J., Bousema, T., Shekalaghe, S., Cook, J., Corran, P., Ghani, A., Riley, E. M. and Drakeley, C. (2009). Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLoS ONE 4, e6083.CrossRefGoogle ScholarPubMed
Stone, W., Goncalves, B. P., Bousema, T. and Drakeley, C. (2015). Assessing the infectious reservoir of falciparum malaria: past and future. Trends in Parasitology 31, 287296.CrossRefGoogle ScholarPubMed
Stone, W. J., Churcher, T. S., Graumans, W., van Gemert, G. J., Vos, M. W., Lanke, K. H., van de Vegte-Bolmer, M. G., Siebelink-Stoter, R., Dechering, K. J., Vaughan, A. M., Camargo, N., Kappe, S. H., Sauerwein, R. W. and Bousema, T. (2014). A scalable assessment of Plasmodium falciparum transmission in the standard membrane-feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase. Journal in Infectious Diseases 210, 14561463.CrossRefGoogle ScholarPubMed
Sutherland, C. J. (2009). Surface antigens of Plasmodium falciparum gametocytes—a new class of transmission-blocking vaccine targets? Molecular and Biochemical Parasitology 166, 9398.CrossRefGoogle ScholarPubMed
Tao, D., Ubaida-Mohien, C., Mathias, D. K., King, J. G., Pastrana-Mena, R., Tripathi, A., Goldowitz, I., Graham, D. R., Moss, E., Marti, M. and Dinglasan, R. R. (2014). Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology. Molecular & Cellular Proteomics 13, 27052724.CrossRefGoogle Scholar
Tiburcio, M., Silvestrini, F., Bertuccini, L., Sander, A. F., Turner, L., Lavstsen, T. and Alano, P. (2012). Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cellular MicrobiologyGoogle ScholarPubMed
Tonwong, N., Sattabongkot, J., Tsuboi, T., Iriko, H., Takeo, S., Sirichaisinthop, J. and Udomsangpetch, R. (2012). Natural infection of Plasmodium falciparum induces inhibitory antibodies against gametocyte development in human hosts. Japanese Journal of Infectious Diseases 65, 152156.CrossRefGoogle ScholarPubMed
van der Kolk, M., de Vlas, S. J. and Sauerwein, R. W. (2006). Reduction and enhancement of Plasmodium falciparum transmission by endemic human sera. International Journal for Parasitology 36, 10911095.CrossRefGoogle ScholarPubMed
van der Kolk, M., De Vlas, S. J., Saul, A., van de Vegte-Bolmer, M., Eling, W. M. and Sauerwein, R. W. (2005). Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data. Parasitology 130, 1322.CrossRefGoogle ScholarPubMed
van Dijk, M. R., Janse, C. J., Thompson, J., Waters, A. P., Braks, J. A., Dodemont, H. J., Stunnenberg, H. G., van Gemert, G. J., Sauerwein, R. W. and Eling, W. (2001). A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153164.CrossRefGoogle ScholarPubMed
Vaughan, J. A. (2007). Population dynamics of Plasmodium sporogony. Trends in Parasitology 23, 6370.CrossRefGoogle ScholarPubMed
Vermeulen, A. N., Ponnudurai, T., Beckers, P. J., Verhave, J. P., Smits, M. A. and Meuwissen, J. H. (1985). Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. Journal of Experimental Medicine 162, 14601476.CrossRefGoogle ScholarPubMed
Wass, M. N., Stanway, R., Blagborough, A. M., Lal, K., Prieto, J. H., Raine, D., Sternberg, M. J. E., Talman, A. M., Tomley, F., Yates, J. I. and Sinden, R. E. (2012). Proteomic analysis of Plasmodium in the mosquito: progress and pitfalls. Parasitology 139, 11311145.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (2015). World Malaria Report 2014. doi: http://www.who.int/malaria/publications/world_malaria_report/en/.Google Scholar
Wu, Y., Ellis, R. D., Shaffer, D., Fontes, E., Malkin, E. M., Mahanty, S., Fay, M. P., Narum, D., Rausch, K., Miles, A. P., Aebig, J., Orcutt, A., Muratova, O., Song, G., Lambert, L., Zhu, D., Miura, K., Long, C., Saul, A., Miller, L. H. and Durbin, A. P. (2008). Phase 1 trial of Malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with Montanide ISA 51. PLoS ONE 3, e2636.CrossRefGoogle ScholarPubMed
Wu, Y., Sinden, R. E., Churcher, T. S., Tsuboi, T. and Yusibov, V. (2015). Development of malaria transmission-blocking vaccines: from concept to product. Advances in Parasitology 89, 109152.CrossRefGoogle ScholarPubMed
Young, J. A., Fivelman, Q. L., Blair, P. L., de la Vega, P., Le Roch, K. G., Zhou, Y., Carucci, D. J., Baker, D. A. and Winzeler, E. A. (2005). The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Molecular and Biochemical Parasitology 143, 6779.CrossRefGoogle ScholarPubMed