Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-10-06T20:50:13.594Z Has data issue: false hasContentIssue false

The protozoan parasite Trichomonas gallinae causes adult and nestling mortality in a declining population of European Turtle Doves, Streptopelia turtur

Published online by Cambridge University Press:  12 September 2014

JENNIFER E. STOCKDALE*
Affiliation:
School of Biology, University of Leeds, Irene Manton Building, Leeds LS2 9JT, UK Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
JENNY C. DUNN*
Affiliation:
RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Potton Road, Sandy, Bedfordshire SG19 2DL, UK
SIMON J. GOODMAN
Affiliation:
School of Biology, University of Leeds, Irene Manton Building, Leeds LS2 9JT, UK
ANTONY J. MORRIS
Affiliation:
RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Potton Road, Sandy, Bedfordshire SG19 2DL, UK
DANAË K. SHEEHAN
Affiliation:
RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, The Lodge, Potton Road, Sandy, Bedfordshire SG19 2DL, UK
PHILIP V. GRICE
Affiliation:
Natural England, Suite D, Unex House, Bourges Boulevard, Peterborough PE1 1NG, UK
KEITH C. HAMER
Affiliation:
School of Biology, University of Leeds, Irene Manton Building, Leeds LS2 9JT, UK
*
*Corresponding authors: Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK. E-mail: StockdaleJE@cardiff.ac.uk and RSPB Centre for Conservation Science, RSPB, The Lodge, Potton Road, Sandy, Bedfordshire, SG19 2DL, UK. E-mail: Jenny.Dunn@rspb.org.uk
*Corresponding authors: Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK. E-mail: StockdaleJE@cardiff.ac.uk and RSPB Centre for Conservation Science, RSPB, The Lodge, Potton Road, Sandy, Bedfordshire, SG19 2DL, UK. E-mail: Jenny.Dunn@rspb.org.uk

Summary

Studies incorporating the ecology of clinical and sub-clinical disease in wild populations of conservation concern are rare. Here we examine sub-clinical infection by Trichomonas gallinae in a declining population of free-living European Turtle Doves and suggest caseous lesions cause mortality in adults and nestlings through subsequent starvation and/or suffocation. We found a 100% infection rate by T. gallinae in adult and nestling Turtle Doves (n = 25) and observed clinical signs in three adults and four nestlings (28%). Adults with clinical signs displayed no differences in any skeletal measures of size but had a mean 3·7% reduction in wing length, with no overlap compared to those without clinical signs. We also identified T. gallinae as the suggested cause of mortality in one Red-legged Partridge although disease presentation was different. A minimum of four strains of T. gallinae, characterized at the ITS/5·8S/ITS2 ribosomal region, were isolated from Turtle Doves. However, all birds with clinical signs (Turtle Doves and the Red-legged Partridge) carried a single strain of T. gallinae, suggesting that parasite spill over between Columbidae and Galliformes is a possibility that should be further investigated. Overall, we highlight the importance of monitoring populations for sub-clinical infection rather than just clinical disease.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.Google Scholar
Amin, A., Bilic, I., Liebhart, D. and Hess, M. (2014). Trichomonads in birds – a review. Parasitology 141, 733747.CrossRefGoogle ScholarPubMed
Baker, K. (1993). Identification Guide to European Non-Passerines. BTO Guide 24. British Trust for Ornithology, Thetford.Google Scholar
Balmer, D. E., Gillings, S., Caffrey, B. J., Swann, R. L., Downie, I. S. and Fuller, R. J. (2013). Bird Atlas 2007–11: the Breeding and Wintering Birds of Britain and Ireland. BTO, Thetford, UK.Google Scholar
BonDurant, R. and Honigberg, B. (1994). Trichomonads of veterinary importance. In Parasitic Protozoa (ed. Kreier, J.), pp. 111206. Academic Press, New York, USA.Google Scholar
Browne, S. and Aebischer, N. (2003). Habitat use, foraging ecology and diet of Turtle Doves Streptopelia turtur in Britain. Ibis 145, 572582.Google Scholar
Browne, S. J. and Aebischer, N. (2004). Temporal changes in the breeding ecology of European Turtle Doves Streptopelia turtur in Britain, and implications for conservation. Ibis 146, 125137.Google Scholar
Bunbury, N., Bell, D., Jones, C., Greenwood, A. and Hunter, P. (2005). Comparison of the InPouch TF culture system and wet-mount microscopy for diagnosis of Trichomonas gallinae infections in the pink pigeon Columba mayeri . Journal of Clinical Microbiology 43, 10051006.CrossRefGoogle ScholarPubMed
Bunbury, N., Jones, C. G., Greenwood, A. G. and Bell, D. J. (2007). Trichomonas gallinae in Mauritian columbids: implications for an endangered endemic. Journal of Wildlife Diseases 43, 399407.CrossRefGoogle ScholarPubMed
Bunbury, N., Jones, C. G., Greenwood, A. G. and Bell, D. J. (2008 a). Epidemiology and conservation implications of Trichomonas gallinae infection in the endangered Mauritian Pink Pigeon. Biological Conservation 141, 153161.Google Scholar
Bunbury, N., Stidworthy, M. F., Greenwood, A. G., Jones, C. G., Sawmy, S., Cole, R. E., Edmunds, K. and Bell, D. J. (2008 b). Causes of mortality in free-living Mauritian pink pigeons Columba mayeri, 2002–2006. Endangered Species Research 9, 213220.Google Scholar
Callait-Cardinal, M.-P., Leroux, S., Venereau, E., Chauve, C. M., Le Pottier, G. and Zenner, L. (2007). Incidence of histomonosis in turkeys in France since the bans of dimetridazole and nifursol. Veterinary Record 161, 581585.Google Scholar
Chi, J. F., Lawson, B., Durrant, C., Beckmann, K., John, S., Alrefaei, A. F., Kirkbride, K., Bell, D. J., Cunningham, A. A. and Tyler, K. M. (2013). The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 12341245.Google Scholar
Clinchy, M., Zanette, L., Boonstra, R., Wingfield, J. C. and Smith, J. N. M. (2004). Balancing food and predator pressure induces chronic stress in songbirds. Proceedings of the Royal Society B: Biological Sciences, 271, 24732479.CrossRefGoogle ScholarPubMed
Cooper, J. (2004). Information from dead and dying birds. In Bird Ecology and Conservation: A Handbook of Techniques (ed. Sutherland, W., Newton, I. and Green, R.), pp. 179209. Oxford University Press, Oxford, UK.Google Scholar
Dernburg, A., Rogier-Saderne, M.-C., Chauve, C. and Zenner, L. (2005). Consequences of the withdrawal of dimetridazole on intestinal parasitism in ducks. Veterinary Record 156, 148150.Google Scholar
Dunn, J. C., Goodman, S. J., Benton, T. G. and Hamer, K. C. (2013). Avian blood parasite infection during the non-breeding season: an overlooked issue in declining populations? BMC Ecology 13, 30.Google Scholar
Eaton, M., Cuthbert, R., Dunn, E., Grice, P., Hall, C., Hayhow, D., Hearn, R., Holt, C., Knipe, A., Marchant, J., Mavor, R., Moran, N., Mukhida, F., Musgrove, A., Noble, D., Oppel, S., Risely, K., Stroud, D., Toms, M. and Wotton, S. (2012). The State of the UK's Birds 2012. RSPB, Sandy, Bedfordshire, UK.Google Scholar
Erwin, K. G., Kloss, C., Lyles, J., Felderhoff, J., Fedynich, A. M., Henke, S. E. and Roberson, J. A. (2000). Survival of Trichomonas gallinae in white-winged dove carcasses. Journal of Wildlife Diseases 36, 551554.Google Scholar
Forrester, D. J. and Foster, G. W. (2008). Trichomonosis. In Parasitic Diseases of Wild Birds (ed. Atkinson, C. T., Thomas, N. J. and Hunter, D. B.), pp. 120153. Ames, IA, USA.Google Scholar
Ganas, P., Jaskulska, B., Lawson, B., Zadravec, M., Hess, M. and Bilic, I. (2014). Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches. Parasitology 141, 652661.Google Scholar
Gaspar da Silva, D., Barton, E., Bunbury, N., Lunness, P., Bell, D. J. and Tyler, K. M. (2007). Molecular identity and heterogeneity of Trichomonad parasites in a closed avian population. Infection, Genetics and Evolution 7, 433440.Google Scholar
Grabensteiner, E., Bilic, I., Kolbe, T. and Hess, M. (2010). Molecular analysis of clonal trichomonad isolates indicate the existence of heterogenic species present in different birds and within the same host. Veterinary Parasitology 172, 5364.Google Scholar
Griekspoor, A. and Groothuis, T. (2006). 4 Peaks. Version 1.7.2. mekentosj.com.Google Scholar
Hall, T. (2005). BioEdit: Biological Sequence Alignment Editor for Win95/98/NT/2 K/XP. Ibis Biosciences, Carlsbad, CA, USA. http://www.mbio.ncsu.edu/BioEdit/bioedit.Google Scholar
Hatchwell, B. J., Wood, M. J., Anwar, M. A., Chamberlain, D. and Perrins, C. (2001). The haematozoan parasites of Common Blackbirds Turdus merula: associations with host condition. Ibis 143, 420426.Google Scholar
Höfle, U., Gortazar, C., Ortíz, J. A., Knispel, B. and Kaleta, E. F. (2004). Outbreak of trichomoniasis in a woodpigeon (Columba palumbus) wintering roost. European Journal of Wildlife Research 50, 7377.Google Scholar
Kocan, R. (1969). Various grains and liquid as potential vehicles of transmission of Trichomonas gallinae . Bulletin of the Wildlife Disease Association 5, 148149.Google Scholar
Krone, O., Altenkamp, R. and Kenntner, N. (2005). Prevalence of Trichomonas gallinae in northern goshawks from the Berlin area of northeastern Germany. Journal of Wildlife Diseases 41, 304309.Google Scholar
Lawson, B., Cunningham, A. A., Chantrey, J., Hughes, L. A., John, S. K., Bunbury, N., Bell, D. J. and Tyler, K. M. (2011 a). A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infection, Genetics and Evolution 11, 16381645.Google Scholar
Lawson, B., Robinson, R. A., Neimanis, A., Handeland, K., Isomursu, M., Agren, E. O., Hamnes, I. S., Tyler, K. M., Chantrey, J., Hughes, L. A., Pennycott, T. W., Simpson, V. R., John, S. K., Peck, K. M., Toms, M. P., Bennett, M., Kirkwood, J. K. and Cunningham, A. A. (2011 b). Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143153.Google Scholar
Lawson, B., Robinson, R. A., Colvile, K. M., Peck, K. M., Chantrey, J., Pennycott, T. W., Simpson, V. R., Toms, M. P. and Cunningham, A. A. (2012). The emergence and spread of finch trichomonosis in the British Isles. Philosophical transactions of the Royal Society of London B 367, 28522863.Google Scholar
Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. and Isomursu, M. (2013). Impacts of trichomonosis epidemics on Greenfinch Chloris chloris and Chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357366.Google Scholar
Lennon, R. J., Dunn, J. C., Stockdale, J. E., Goodman, S. J., Morris, A. J. and Hamer, K. C. (2013). Trichomonad parasite infection in four species of Columbidae in the UK. Parasitology 140, 13681376.Google Scholar
Lindström, K. M., Hawley, D. M., Davis, A. K. and Wikelski, M. (2005). Stress responses and disease in three wintering house finch (Carpodacus mexicanus) populations along a latitudinal gradient. General and Comparative Endocrinology 143, 231239.Google Scholar
Marzal, A., Asghar, M., Rodríguez, L., Reviriego, M., Hermosell, I. G., Balbontín, J., Garcia-Longoria, L., de Lope, F. and Bensch, S. (2013). Co-infections by malaria parasites decrease feather growth but not feather quality in house martin. Journal of Avian Biology 44, 437444.Google Scholar
Muñoz, E. (1995). Estudio de La Prevalencia Y Susceptibilidad a La Infección Por Trichomonas Gallinae En Aves Domésticas Y Silvestres. Valoración de La Sensibilidad Del Protozoo a Diferentes Derivados Imidazólicos. Universitat Autónoma de Barcelona, Cerdanyola, Catalonia, Spain.Google Scholar
Murton, R. K., Westwood, N. J. and Isaacson, A. (1964). The feeding habits of the Woodpigeon Columba palumbus, Stock Dove C. oenas and Turtle Dove Streptopelia turtur . Ibis 106, 174188.CrossRefGoogle Scholar
Natural England (2012). Entry Level Stewardship: Environmental Stewardship Handbook, 4th Edn. January 2013. Natural England.Google Scholar
PECBMS. (2012). Population Trends of Common European Breeding Birds. Czech Society for Ornithology, Prague.Google Scholar
Pennycott, T. W. (1998). Carriage of trichomonads, Hexamita species and Blastocystis species by adult pheasants. Veterinary record, 143, 142143.Google Scholar
R Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. www.R-project.org.Google Scholar
Rätti, O., Dufva, R. and Alatalo, R. (1993). Blood parasites and male fitness in the Pied Flycatcher. Oecologia 96, 410414.Google Scholar
Redfern, C. and Clark, J. (2001). Ringers’ Manual. British Trust for Ornithology, Thetford.Google Scholar
Robinson, R. A., Lawson, B., Toms, M. P., Peck, K. M., Kirkwood, J. K., Chantrey, J., Clatworthy, I. R., Evans, A. D., Hughes, L. A., Hutchinson, O. C., John, S. K., Pennycott, T. W., Perkins, M. W., Rowley, P. S., Simpson, V. R., Tyler, K. M. and Cunningham, A. A. (2010). Emerging infectious disease leads to rapid population declines of common British birds. PloS One 5, e12215.Google Scholar
Sansano-Maestre, J., Garijo-Toledo, M. M. and Gómez-Muñoz, M. T. (2009). Prevalence and genotyping of Trichomonas gallinae in pigeons and birds of prey. Avian Pathology 38, 201207.Google Scholar
Schulz, J. H., Bermudez, A. J. and Millspaugh, J. J. (2005). Monitoring presence and annual variation of Trichomoniasis in Mourning Doves. Avian Diseases 49, 387389.CrossRefGoogle ScholarPubMed
Stabler, R. (1954). Trichomonas gallinae: a review. Experimental Parasitology 3, 368402.CrossRefGoogle ScholarPubMed
Thorsen, M., Innes, J., Nugent, G. and Prime, K. (2004). Parental care and growth rates of New Zealand pigeon (Hemiphaga novaeseelandiae) nestlings. Notornis 51, 136140.Google Scholar
Van Riper, C. and van Riper, S. (1980). A necropsy procedure for sampling disease in wild birds. The Condor 82, 8598.Google Scholar
Villanúa, D., Höfle, U., Pérez-Rodríguez, L. and Gortázar, C. (2006). Trichomonas gallinae in wintering common wood pigeons Columba palumbus in Spain. Ibis 148, 641648.Google Scholar